Extended WTLS iterative algorithm of 3D similarity transformation based on Gibbs vector

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Huaien Zeng, Hongwei He, Legeng Chen, Guobin Chang, Haiqing He
{"title":"Extended WTLS iterative algorithm of 3D similarity transformation based on Gibbs vector","authors":"Huaien Zeng,&nbsp;Hongwei He,&nbsp;Legeng Chen,&nbsp;Guobin Chang,&nbsp;Haiqing He","doi":"10.1007/s40328-021-00363-3","DOIUrl":null,"url":null,"abstract":"<div><p>Considering coordinate errors of both control points and non-control points, and different weights between control points and non-control points, this contribution proposes an extended weighted total least squares (WTLS) iterative algorithm of 3D similarity transformation based on Gibbs vector. It treats the transformation parameters and the target coordinate of non-control points as unknowns. Thus it is able to recover the transformation parameters and compute the target coordinate of non-control points simultaneously. It is also able to assess the accuracy of the transformation parameters and the target coordinates of non-control points. Obviously it is different from the traditional algorithms that first recover the transformation parameters and then compute the target coordinate of non-control points by the estimated transformation parameters. Besides it utilizes a Gibbs vector to represent the rotation matrix. This representation does not introduce additional unknowns; neither introduces transcendental function like sine or cosine functions. As a result, the presented algorithm is not dependent to the initial value of transformation parameters. This excellent performance ensures the presented algorithm is suitable for the big rotation angles. Two numerical cases with big rotation angles including a real world case (LIDAR point cloud registration) and a simulative case are tested to validate the presented algorithm.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":"57 1","pages":"43 - 61"},"PeriodicalIF":1.4000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-021-00363-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Considering coordinate errors of both control points and non-control points, and different weights between control points and non-control points, this contribution proposes an extended weighted total least squares (WTLS) iterative algorithm of 3D similarity transformation based on Gibbs vector. It treats the transformation parameters and the target coordinate of non-control points as unknowns. Thus it is able to recover the transformation parameters and compute the target coordinate of non-control points simultaneously. It is also able to assess the accuracy of the transformation parameters and the target coordinates of non-control points. Obviously it is different from the traditional algorithms that first recover the transformation parameters and then compute the target coordinate of non-control points by the estimated transformation parameters. Besides it utilizes a Gibbs vector to represent the rotation matrix. This representation does not introduce additional unknowns; neither introduces transcendental function like sine or cosine functions. As a result, the presented algorithm is not dependent to the initial value of transformation parameters. This excellent performance ensures the presented algorithm is suitable for the big rotation angles. Two numerical cases with big rotation angles including a real world case (LIDAR point cloud registration) and a simulative case are tested to validate the presented algorithm.

基于Gibbs向量的三维相似变换扩展WTLS迭代算法
考虑到控制点与非控制点的坐标误差,以及控制点与非控制点之间的权值不同,本文提出了一种基于Gibbs向量的三维相似性变换扩展加权总最小二乘迭代算法。它将变换参数和非控制点的目标坐标视为未知数。从而能够同时恢复变换参数和计算非控制点的目标坐标。它还可以评估转换参数和非控制点目标坐标的准确性。显然,它不同于传统的算法是先恢复变换参数,然后根据估计的变换参数计算非控制点的目标坐标。此外,它利用吉布斯向量来表示旋转矩阵。这种表示不引入额外的未知数;两者都没有引入超越函数如正弦或余弦函数。因此,该算法不依赖于变换参数的初始值。这一优异的性能保证了该算法适用于大旋转角度。为了验证该算法的有效性,我们对两个大旋转角度的数值案例进行了测试,包括一个真实世界的案例(激光雷达点云配准)和一个模拟案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信