{"title":"Ensemble Deep Learning for Detecting Onset of Abnormal Operation in Industrial Multi-component Systems","authors":"Balaji Selvanathan, S. Nistala, Venkataramana Runkana, Saurabh Jaywant Desai, Shashank Agarwal","doi":"10.36001/ijphm.2022.v13i2.3093","DOIUrl":null,"url":null,"abstract":"Breakdowns and unplanned shutdowns in industrial processes and equipment can lead to significant loss of availability and revenue. It is imperative to perform optimal maintenance of such systems when signs of abnormal behavior are detected and before they propagate and lead to catastrophic failure. This is particularly challenging in systems with interconnected multiple components as it is difficult to isolate the effect of one component on the operation of other components in the system. In this work, an ensemble approach based on Cascaded Convolutional neural network and Long Short-term Memory (CC-LSTM) network models is proposed for detecting and predicting the time of onset of faults in interconnected multicomponent systems. The performance of the ensemble CC-LSTM model was demonstrated on an industrial 4-component system and was found to improve the accuracy of onset time predictions by ~15% compared to individual CC-LSTM models and ~25-40% compared to commonly used deep learning techniques such as dense neural networks, convolutional neural networks and LSTMs. The CC-LSTM and the ensemble models also had the lowest missed detection rates and zero false positive rates making them ideal for real-time monitoring and fault detection in multicomponent systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2022.v13i2.3093","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Breakdowns and unplanned shutdowns in industrial processes and equipment can lead to significant loss of availability and revenue. It is imperative to perform optimal maintenance of such systems when signs of abnormal behavior are detected and before they propagate and lead to catastrophic failure. This is particularly challenging in systems with interconnected multiple components as it is difficult to isolate the effect of one component on the operation of other components in the system. In this work, an ensemble approach based on Cascaded Convolutional neural network and Long Short-term Memory (CC-LSTM) network models is proposed for detecting and predicting the time of onset of faults in interconnected multicomponent systems. The performance of the ensemble CC-LSTM model was demonstrated on an industrial 4-component system and was found to improve the accuracy of onset time predictions by ~15% compared to individual CC-LSTM models and ~25-40% compared to commonly used deep learning techniques such as dense neural networks, convolutional neural networks and LSTMs. The CC-LSTM and the ensemble models also had the lowest missed detection rates and zero false positive rates making them ideal for real-time monitoring and fault detection in multicomponent systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.