Hydrothermal alteration and corresponding reservoir significance of the Permian Emeishan basaltic lavas, west Sichuan, China

IF 1.2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Y. B. Sun, Y. F. Zhang, A. Xi, Y. Tang, Bo Zhang, S. Pei, R. R. Li, H. Yin, Q. Zeng, H. Qu, R. Zhou
{"title":"Hydrothermal alteration and corresponding reservoir significance of the Permian Emeishan basaltic lavas, west Sichuan, China","authors":"Y. B. Sun, Y. F. Zhang, A. Xi, Y. Tang, Bo Zhang, S. Pei, R. R. Li, H. Yin, Q. Zeng, H. Qu, R. Zhou","doi":"10.1080/08120099.2023.2145614","DOIUrl":null,"url":null,"abstract":"Abstract Reservoir spaces, such as vesicles, ‘secondary’ amygdales, dissolution caverns and geodes, are widely developed in the Emeishan basaltic lavas in the Zhoudaping section, Leshan, west Sichuan, China. The dissolution characteristics, cementation sequences, hydrothermal activity stages, as well as fluid types, and their effects on the reservoir capacity were investigated for each stage. Macroscopically, the dissolution features present as irregular dissolution zones, which are characterised by a light red colour. Microscopically, in the dissolved zone, the cementation-filling minerals are associated with complex fill sequences, such as quartz/laumontite/chlorite–chlorite/saponite–epidote/celadonite–cryptocrystalline chlorite–laumontite/calcite/quartz. The U–Pb geochronology shows that the age of chlorite fill in amygdales is 235.3 ± 19.6 Ma; the coarse-crystalline quartz inside dissolution caverns/geodes, 124.47 ± 5.63 to 123.84 ± 5.63 Ma; and the siliceous mineral-filled amygdales, 118.34 ± 3.70 to 114.08 ± 3.76 Ma, which correspond to the early Late Triassic and the mid–late Early Cretaceous, respectively. Combined with geochemical characteristics of post-dissolution fill, the amygdales are affected by two stages of hydrothermal activity: chlorite filling of the amygdales corresponds to post-magma hydrothermal fluids during the early Late Triassic, and the siliceous mineral-fill in amygdales corresponds to deep-sourced hydrothermal fluids during the mid–late Early Cretaceous. The geodes/dissolution caverns result from a single stage of hydrothermal activity related to the mid–late Early Cretaceous deep-source low-temperature hydrothermal fluid. The Late Triassic post-magma hydrothermal fluids are generally destructive to pores, and tectonic-related dissolution of deep-sourced hydrothermal fluids has a positive effect on the formation of reservoir spaces, greatly enhancing fluid storage and flow capacities of the volcanic lavas. We recommend the multi-stage hydrothermal dissolution during Late Triassic–Early Cretaceous and faults, fractures and columnar joints be the focus of hydrocarbon exploration. KEY POINTS The reservoir spaces developed in the Zhoudaping section, such as amygdales, dissolution caverns and geodes, were controlled by different stages and types of hydrothermal alteration. Amygdales are the product of two hydrothermal events, which correspond to post-magma hydrothermal fluids during the early Late Triassic and the deep-sourced hydrothermal fluids of the mid–late Early Cretaceous. Geodes/dissolution caverns are affected by deep-source low-temperature hydrothermal fluids in the mid–late Early Cretaceous. The multi-stage hydrothermal dissolution during the Late Triassic–Early Cretaceous and faults, fractures and columnar joints should be the focus of hydrocarbon exploration.","PeriodicalId":8601,"journal":{"name":"Australian Journal of Earth Sciences","volume":"70 1","pages":"393 - 410"},"PeriodicalIF":1.2000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08120099.2023.2145614","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Reservoir spaces, such as vesicles, ‘secondary’ amygdales, dissolution caverns and geodes, are widely developed in the Emeishan basaltic lavas in the Zhoudaping section, Leshan, west Sichuan, China. The dissolution characteristics, cementation sequences, hydrothermal activity stages, as well as fluid types, and their effects on the reservoir capacity were investigated for each stage. Macroscopically, the dissolution features present as irregular dissolution zones, which are characterised by a light red colour. Microscopically, in the dissolved zone, the cementation-filling minerals are associated with complex fill sequences, such as quartz/laumontite/chlorite–chlorite/saponite–epidote/celadonite–cryptocrystalline chlorite–laumontite/calcite/quartz. The U–Pb geochronology shows that the age of chlorite fill in amygdales is 235.3 ± 19.6 Ma; the coarse-crystalline quartz inside dissolution caverns/geodes, 124.47 ± 5.63 to 123.84 ± 5.63 Ma; and the siliceous mineral-filled amygdales, 118.34 ± 3.70 to 114.08 ± 3.76 Ma, which correspond to the early Late Triassic and the mid–late Early Cretaceous, respectively. Combined with geochemical characteristics of post-dissolution fill, the amygdales are affected by two stages of hydrothermal activity: chlorite filling of the amygdales corresponds to post-magma hydrothermal fluids during the early Late Triassic, and the siliceous mineral-fill in amygdales corresponds to deep-sourced hydrothermal fluids during the mid–late Early Cretaceous. The geodes/dissolution caverns result from a single stage of hydrothermal activity related to the mid–late Early Cretaceous deep-source low-temperature hydrothermal fluid. The Late Triassic post-magma hydrothermal fluids are generally destructive to pores, and tectonic-related dissolution of deep-sourced hydrothermal fluids has a positive effect on the formation of reservoir spaces, greatly enhancing fluid storage and flow capacities of the volcanic lavas. We recommend the multi-stage hydrothermal dissolution during Late Triassic–Early Cretaceous and faults, fractures and columnar joints be the focus of hydrocarbon exploration. KEY POINTS The reservoir spaces developed in the Zhoudaping section, such as amygdales, dissolution caverns and geodes, were controlled by different stages and types of hydrothermal alteration. Amygdales are the product of two hydrothermal events, which correspond to post-magma hydrothermal fluids during the early Late Triassic and the deep-sourced hydrothermal fluids of the mid–late Early Cretaceous. Geodes/dissolution caverns are affected by deep-source low-temperature hydrothermal fluids in the mid–late Early Cretaceous. The multi-stage hydrothermal dissolution during the Late Triassic–Early Cretaceous and faults, fractures and columnar joints should be the focus of hydrocarbon exploration.
川西峨眉山二叠系玄武质熔岩热液蚀变及其储层意义
摘要四川省乐山市周大坪段峨眉山玄武岩熔岩中广泛发育囊泡、次生杏仁核、溶解洞穴和地球洞等储层空间。研究了各阶段的溶解特征、胶结序列、热液活动阶段以及流体类型及其对储层容量的影响。宏观上,溶解特征表现为不规则的溶解带,其特征是浅红色。微观上,在溶解带中,胶结充填矿物与复杂的充填序列有关,如石英/绿柱石/绿泥石-绿泥石/皂石-绿帘石/青瓷石-隐晶质绿泥石-绿柱石/方解石/石英。U–Pb地质年代学表明杏仁中绿泥石充填的年龄为235.3 ± 19.6 马;溶解洞穴/地球洞内的粗晶石英,124.47 ± 5.63至123.84 ± 5.63 马;富含硅质矿物的杏仁,118.34 ± 3.70至114.08 ± 3.76 Ma,分别对应于晚三叠纪早期和早白垩世中晚期。结合溶解后充填的地球化学特征,杏仁核受到两个阶段的热液活动的影响:杏仁核中的绿泥石充填对应于三叠纪早期的岩浆后热液,杏仁核中的硅质矿物充填对应于白垩纪中晚期的深源热液。地球洞/溶解洞穴是与早白垩世中晚期深源低温热液流体有关的单一阶段热液活动的结果。晚三叠世后岩浆热液通常对孔隙具有破坏性,深源热液的构造相关溶解对储层空间的形成有积极影响,大大提高了火山熔岩的流体储存和流动能力。建议以晚三叠世-早白垩世的多阶段热液溶解为油气勘探重点。周大坪剖面发育的储层空间,如杏仁核、溶蚀洞穴和地球洞,受不同阶段和类型的热液蚀变控制。杏仁核是两个热液事件的产物,分别对应于三叠纪早期的岩浆后热液和白垩纪中晚期的深源热液。早白垩世中晚期,大地测量/溶解洞穴受到深源低温热液流体的影响。晚三叠世-早白垩世的多阶段热液溶解以及断层、裂缝和柱状节理应成为油气勘探的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Australian Journal of Earth Sciences
Australian Journal of Earth Sciences 地学-地球科学综合
CiteScore
2.80
自引率
8.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Australian Journal of Earth Sciences publishes peer-reviewed research papers as well as significant review articles of general interest to geoscientists. The Journal covers the whole field of earth science including basin studies, regional geophysical studies and metallogeny. There is usually a thematic issue each year featuring a selection of papers on a particular area of earth science. Shorter papers are encouraged and are given priority in publication. Critical discussion of recently published papers is also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信