Synthesis of reversible circuits consisting of NOT, CNOT and 2-CNOT gates with small number of additional inputs

IF 0.3 Q4 MATHEMATICS, APPLIED
D. Zakablukov
{"title":"Synthesis of reversible circuits consisting of NOT, CNOT and 2-CNOT gates with small number of additional inputs","authors":"D. Zakablukov","doi":"10.1515/dma-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract Reversible circuits consisting of NOT, CNOT and 2-CNOT gates with small number of additional inputs are considered. For such circuits implementing maps f : Z2n $\\begin{array}{} \\displaystyle \\mathbb Z_2^n \\end{array}$ → Z2n $\\begin{array}{} \\displaystyle \\mathbb Z_2^n \\end{array}$, we study the Shannon complexity function L(n, q) under the condition that the number of additional inputs is q = O(n2). For this range of q, it is shown that L(n, q) ≍ n2n / log2 n. The growth order L(n, q) ≍ n2n / log2 (n + q) for all q ≲ n2n−⌈n/ϕ(n)⌉, where ϕ(n) → ∞ and n / ϕ(n) − log2 n → ∞ as n → ∞, is evaluated.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Reversible circuits consisting of NOT, CNOT and 2-CNOT gates with small number of additional inputs are considered. For such circuits implementing maps f : Z2n $\begin{array}{} \displaystyle \mathbb Z_2^n \end{array}$ → Z2n $\begin{array}{} \displaystyle \mathbb Z_2^n \end{array}$, we study the Shannon complexity function L(n, q) under the condition that the number of additional inputs is q = O(n2). For this range of q, it is shown that L(n, q) ≍ n2n / log2 n. The growth order L(n, q) ≍ n2n / log2 (n + q) for all q ≲ n2n−⌈n/ϕ(n)⌉, where ϕ(n) → ∞ and n / ϕ(n) − log2 n → ∞ as n → ∞, is evaluated.
由具有少量附加输入的NOT、CNOT和2-CNOT门组成的可逆电路的合成
摘要考虑了由NOT、CNOT和2-CNOT门组成的具有少量附加输入的可逆电路。对于实现映射f:Z2n$\begon{array}{}\displaystyle\mathbb Z_2^n\end{array}$的此类电路→ Z2n$\begin{array}{}\displaystyle\mathbb Z_2^n\end{array}$,我们研究了在附加输入数为q=O(n2)的条件下的Shannon复杂度函数L(n,q)。对于这个q的范围,表明L(n,q)≍n2n/log2n。所有q≲n2n的生长顺序为L(n、q)\87.81; n2n/log2(n+q)→ ∞ 和n/ξ(n)−log2n→ ∞ as n→ ∞, 评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信