Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models

Q1 Mathematics
Tchavdar T. Marinov , Rossitza S. Marinova
{"title":"Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models","authors":"Tchavdar T. Marinov ,&nbsp;Rossitza S. Marinova","doi":"10.1016/j.csfx.2020.100041","DOIUrl":null,"url":null,"abstract":"<div><p>This work deals with the inverse problem in epidemiology based on a SIR model with <em>time-dependent</em> infectivity and recovery rates, allowing for a better prediction of the long term evolution of a pandemic. The method is used for investigating the COVID-19 spread by first solving an inverse problem for estimating the infectivity and recovery rates from real data. Then, the estimated rates are used to compute the evolution of the disease. The time-depended parameters are estimated for the World and several countries (The United States of America, Canada, Italy, France, Germany, Sweden, Russia, Brazil, Bulgaria, Japan, South Korea, New Zealand) and used for investigating the COVID-19 spread in these countries.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"5 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2020.100041","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054420300221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 36

Abstract

This work deals with the inverse problem in epidemiology based on a SIR model with time-dependent infectivity and recovery rates, allowing for a better prediction of the long term evolution of a pandemic. The method is used for investigating the COVID-19 spread by first solving an inverse problem for estimating the infectivity and recovery rates from real data. Then, the estimated rates are used to compute the evolution of the disease. The time-depended parameters are estimated for the World and several countries (The United States of America, Canada, Italy, France, Germany, Sweden, Russia, Brazil, Bulgaria, Japan, South Korea, New Zealand) and used for investigating the COVID-19 spread in these countries.

基于逆问题的SIR流行病模型系数辨识的COVID-19动力学
这项工作基于具有时间依赖性传染性和恢复率的SIR模型处理流行病学中的逆问题,从而可以更好地预测大流行的长期演变。该方法首先利用实际数据求解传染性和恢复率的逆问题,用于调查COVID-19的传播情况。然后,用估计的速率来计算疾病的演变。对世界和几个国家(美利坚合众国、加拿大、意大利、法国、德国、瑞典、俄罗斯、巴西、保加利亚、日本、韩国、新西兰)的时变参数进行了估计,并用于调查COVID-19在这些国家的传播情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信