{"title":"Disjunctive logic programs, answer sets, and the cut rule","authors":"Éric Martin","doi":"10.1007/s00153-022-00821-x","DOIUrl":null,"url":null,"abstract":"<div><p>In Minker and Rajasekar (J Log Program 9(1):45–74, 1990), Minker proposed a semantics for negation-free disjunctive logic programs that offers a natural generalisation of the fixed point semantics for definite logic programs. We show that this semantics can be further generalised for disjunctive logic programs with classical negation, in a constructive modal-theoretic framework where rules are built from <i>claims</i> and <i>hypotheses</i>, namely, formulas of the form <span>\\(\\Box \\varphi \\)</span> and <span>\\(\\Diamond \\Box \\varphi \\)</span> where <span>\\(\\varphi \\)</span> is a literal, respectively, yielding a “base semantics” for general disjunctive logic programs. Model-theoretically, this base semantics is expressed in terms of a classical notion of logical consequence. It has a complete proof procedure based on a general form of the cut rule. Usually, alternative semantics of logic programs amount to a particular interpretation of nonclassical negation as “failure to derive.” The counterpart in our framework is to complement the original program with a set of hypotheses required to satisfy specific conditions, and apply the base semantics to the resulting set. We demonstrate the approach for the answer set semantics. The proposed framework is purely classical in mainly three ways. First, it uses classical negation as unique form of negation. Second, it advocates the computation of logical consequences rather than of particular models. Third, it makes no reference to a notion of preferred or minimal interpretation.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-022-00821-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-022-00821-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
In Minker and Rajasekar (J Log Program 9(1):45–74, 1990), Minker proposed a semantics for negation-free disjunctive logic programs that offers a natural generalisation of the fixed point semantics for definite logic programs. We show that this semantics can be further generalised for disjunctive logic programs with classical negation, in a constructive modal-theoretic framework where rules are built from claims and hypotheses, namely, formulas of the form \(\Box \varphi \) and \(\Diamond \Box \varphi \) where \(\varphi \) is a literal, respectively, yielding a “base semantics” for general disjunctive logic programs. Model-theoretically, this base semantics is expressed in terms of a classical notion of logical consequence. It has a complete proof procedure based on a general form of the cut rule. Usually, alternative semantics of logic programs amount to a particular interpretation of nonclassical negation as “failure to derive.” The counterpart in our framework is to complement the original program with a set of hypotheses required to satisfy specific conditions, and apply the base semantics to the resulting set. We demonstrate the approach for the answer set semantics. The proposed framework is purely classical in mainly three ways. First, it uses classical negation as unique form of negation. Second, it advocates the computation of logical consequences rather than of particular models. Third, it makes no reference to a notion of preferred or minimal interpretation.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.