R. Miglani, G. S. Gaba, Mehedi Masud, Roobaea Alroobaea
{"title":"Gain analysis of high-speed DWDM link with different optical amplification configurations","authors":"R. Miglani, G. S. Gaba, Mehedi Masud, Roobaea Alroobaea","doi":"10.21307/ijssis-2020-028","DOIUrl":null,"url":null,"abstract":"Abstract Evolution of data-hungry devices has prompted the need for an exclusive communication infrastructure that can cater to the exponential increase in the need for high-speed data access. Since optical fiber links are inherently capable of supporting high-transmission data rates, fiber systems will be an integral part of the larger strategy to provide cost-effective high-speed data access to end users. This paper demonstrates the 100 × 40-Gbps dense wavelength division multiplexing (DWDM)-based 100-km-long fiber link whose performance has been analyzed using various configurations of a hybrid optical amplifier. The performance of the proposed link has been investigated using parameters like gain (dB) and bit error rate (BER). During the analysis, it has been observed that hybrid amplification, i.e., combination semiconductor optical amplifier (SOA), erbium-doped fiber amplifier (EDFA), and Raman amplifier, delivers overwhelming gain (dB) in comparison to the conventional stand-alone amplifier. Further, it has been seen that among different positional configurations of the amplifier, symmetrically positioned hybrid amplifiers achieved the gain of 18.6 dB, while the SOA link with similar configuration and parameters delivered link gain of merely −2.6 dB. In terms of BER performance, the symmetric hybrid configuration was outstanding with BER of 10−5, while preamplification link BER was merely 10−3, and post amplification being the most undesirable. The proposed link has been designed and investigated using OptiSystemTM 14.2.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":"1 - 8"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2020-028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Evolution of data-hungry devices has prompted the need for an exclusive communication infrastructure that can cater to the exponential increase in the need for high-speed data access. Since optical fiber links are inherently capable of supporting high-transmission data rates, fiber systems will be an integral part of the larger strategy to provide cost-effective high-speed data access to end users. This paper demonstrates the 100 × 40-Gbps dense wavelength division multiplexing (DWDM)-based 100-km-long fiber link whose performance has been analyzed using various configurations of a hybrid optical amplifier. The performance of the proposed link has been investigated using parameters like gain (dB) and bit error rate (BER). During the analysis, it has been observed that hybrid amplification, i.e., combination semiconductor optical amplifier (SOA), erbium-doped fiber amplifier (EDFA), and Raman amplifier, delivers overwhelming gain (dB) in comparison to the conventional stand-alone amplifier. Further, it has been seen that among different positional configurations of the amplifier, symmetrically positioned hybrid amplifiers achieved the gain of 18.6 dB, while the SOA link with similar configuration and parameters delivered link gain of merely −2.6 dB. In terms of BER performance, the symmetric hybrid configuration was outstanding with BER of 10−5, while preamplification link BER was merely 10−3, and post amplification being the most undesirable. The proposed link has been designed and investigated using OptiSystemTM 14.2.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity