On cohomology in symmetric tensor categories in prime characteristic

IF 0.8 4区 数学 Q2 MATHEMATICS
D. Benson, P. Etingof
{"title":"On cohomology in symmetric tensor categories in prime characteristic","authors":"D. Benson, P. Etingof","doi":"10.4310/hha.2022.v24.n2.a8","DOIUrl":null,"url":null,"abstract":"We describe graded commutative Gorenstein algebras ${\\mathcal E}_n(p)$ over a field of characteristic $p$, and we conjecture that $\\mathrm{Ext}^\\bullet_{\\mathsf{Ver}_{p^{n+1}}}(1,1)\\cong{\\mathcal E}_{n}(p)$, where $\\mathsf{Ver}_{p^{n+1}}$ are the new symmetric tensor categories recently constructed in \\cite{Benson/Etingof:2019a,Benson/Etingof/Ostrik,Coulembier}. We investigate the combinatorics of these algebras, and the relationship with Minc's partition function, as well as possible actions of the Steenrod operations on them. Evidence for the conjecture includes a large number of computations for small values of $n$. We also provide some theoretical evidence. Namely, we use a Koszul construction to identify a homogeneous system of parameters in ${\\mathcal E}_n(p)$ with a homogeneous system of parameters in $\\mathrm{Ext}^\\bullet_{\\mathsf{Ver}_{p^{n+1}}}(1,1)$. These parameters have degrees $2^i-1$ if $p=2$ and $2(p^i-1)$ if $p$ is odd, for $1\\le i \\le n$. This at least shows that $\\mathrm{Ext}^\\bullet_{\\mathsf{Ver}_{p^{n+1}}}(1,1)$ is a finitely generated graded commutative algebra with the same Krull dimension as ${\\mathcal E}_n(p)$. For $p=2$ we also show that $\\mathrm{Ext}^\\bullet_{\\mathsf{Ver}_{2^{n+1}}}(1,1)$ has the expected rank $2^{n(n-1)/2}$ as a module over the subalgebra of parameters.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We describe graded commutative Gorenstein algebras ${\mathcal E}_n(p)$ over a field of characteristic $p$, and we conjecture that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)\cong{\mathcal E}_{n}(p)$, where $\mathsf{Ver}_{p^{n+1}}$ are the new symmetric tensor categories recently constructed in \cite{Benson/Etingof:2019a,Benson/Etingof/Ostrik,Coulembier}. We investigate the combinatorics of these algebras, and the relationship with Minc's partition function, as well as possible actions of the Steenrod operations on them. Evidence for the conjecture includes a large number of computations for small values of $n$. We also provide some theoretical evidence. Namely, we use a Koszul construction to identify a homogeneous system of parameters in ${\mathcal E}_n(p)$ with a homogeneous system of parameters in $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)$. These parameters have degrees $2^i-1$ if $p=2$ and $2(p^i-1)$ if $p$ is odd, for $1\le i \le n$. This at least shows that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)$ is a finitely generated graded commutative algebra with the same Krull dimension as ${\mathcal E}_n(p)$. For $p=2$ we also show that $\mathrm{Ext}^\bullet_{\mathsf{Ver}_{2^{n+1}}}(1,1)$ has the expected rank $2^{n(n-1)/2}$ as a module over the subalgebra of parameters.
素数特征下对称张量范畴的上同调
我们描述了特征$p$域上的分次交换Gorenstein代数${\mathcal E}_n(p)$,并推测$\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)\cong{\mathcal E}_{n}(p)$,其中$\mathsf{Ver}_{p^{n+1}}$是最近在{Benson/Etingof:2019a,Benson/Edingof/Osterik,Coulenbier}中构造的新的对称张量范畴。我们研究了这些代数的组合数学,以及与Minc配分函数的关系,以及Steenrod运算对它们的可能作用。该猜想的证据包括对小数值$n$的大量计算。我们还提供了一些理论证据。也就是说,我们使用Koszul构造来识别${\mathcal E}_n(p)$中的齐次参数系统和$\mathrm{Ext}^\bullet_{Ver}_{p^{n+1}}}(1,1)$。如果$p=2$,则这些参数的阶数为$2^i-1$;如果$p$为奇数,则对于$1\le i\le n$,这些参数具有$2(p^i-1)$。这至少表明$\mathrm{Ext}^\bullet_{\mathsf{Ver}_{p^{n+1}}}(1,1)$是一个有限生成的分次交换代数,其Krull维数与${\mathcal E}_n(p)$相同。对于$p=2$,我们还表明$\mathrm{Ext}^\bullet_{\mathsf{Ver}_{2^{n+1}}(1,1)$作为参数子代数上的模具有期望秩$2^{n(n-1)/2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信