Distributed dynamic stochastic approximation algorithm over time-varying networks

Kewei Fu, Han-Fu Chen, Wenxiao Zhao
{"title":"Distributed dynamic stochastic approximation algorithm over time-varying networks","authors":"Kewei Fu,&nbsp;Han-Fu Chen,&nbsp;Wenxiao Zhao","doi":"10.1007/s43684-021-00003-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network. Each agent updates its estimate by using the local observation, the dynamic information of the global root, and information received from its neighbors. Compared with similar works in optimization area, we allow the observation to be noise-corrupted, and the noise condition is much weaker. Furthermore, instead of the upper bound of the estimate error, we present the asymptotic convergence result of the algorithm. The consensus and convergence of the estimates are established. Finally, the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00003-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00003-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network. Each agent updates its estimate by using the local observation, the dynamic information of the global root, and information received from its neighbors. Compared with similar works in optimization area, we allow the observation to be noise-corrupted, and the noise condition is much weaker. Furthermore, instead of the upper bound of the estimate error, we present the asymptotic convergence result of the algorithm. The consensus and convergence of the estimates are established. Finally, the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.

时变网络上的分布式动态随机逼近算法
本文提出了一种分布式随机逼近算法,用于跟踪网络上时变回归函数之和的动态根。每个代理通过使用本地观测值、全局根的动态信息以及从邻居那里获得的信息来更新其估计值。与优化领域的类似研究相比,我们允许观测数据受到噪声干扰,而且噪声条件要弱得多。此外,我们提出了算法的渐近收敛结果,而不是估计误差的上限。我们建立了估计的共识和收敛性。最后,我们将该算法应用于分布式目标跟踪问题,并给出了数值示例来证明该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信