{"title":"Hoeffding–Sobol decomposition of homogeneous co-survival functions: from Choquet representation to extreme value theory application","authors":"Cécile Mercadier, P. Ressel","doi":"10.1515/demo-2021-0108","DOIUrl":null,"url":null,"abstract":"Abstract The paper investigates the Hoeffding–Sobol decomposition of homogeneous co-survival functions. For this class, the Choquet representation is transferred to the terms of the functional decomposition, and in addition to their individual variances, or to the superset combinations of those. The domain of integration in the resulting formulae is reduced in comparison with the already known expressions. When the function under study is the stable tail dependence function of a random vector, ranking these superset indices corresponds to clustering the components of the random vector with respect to their asymptotic dependence. Their Choquet representation is the main ingredient in deriving a sharp upper bound for the quantities involved in the tail dependograph, a graph in extreme value theory that summarizes asymptotic dependence.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"179 - 198"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2021-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The paper investigates the Hoeffding–Sobol decomposition of homogeneous co-survival functions. For this class, the Choquet representation is transferred to the terms of the functional decomposition, and in addition to their individual variances, or to the superset combinations of those. The domain of integration in the resulting formulae is reduced in comparison with the already known expressions. When the function under study is the stable tail dependence function of a random vector, ranking these superset indices corresponds to clustering the components of the random vector with respect to their asymptotic dependence. Their Choquet representation is the main ingredient in deriving a sharp upper bound for the quantities involved in the tail dependograph, a graph in extreme value theory that summarizes asymptotic dependence.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations