Fuzzy Logic in HEART and CREAM Methods to Assess Human Error and Find an Optimum Method Using a Hierarchical Fuzzy System: A Case Study in a Steel Factory
Rezie Boroun, Yaser TAHMASBI BIRGANI, Z. Mosavianasl, Gholamabas Shirali
{"title":"Fuzzy Logic in HEART and CREAM Methods to Assess Human Error and Find an Optimum Method Using a Hierarchical Fuzzy System: A Case Study in a Steel Factory","authors":"Rezie Boroun, Yaser TAHMASBI BIRGANI, Z. Mosavianasl, Gholamabas Shirali","doi":"10.18502/ijoh.v13i2.8372","DOIUrl":null,"url":null,"abstract":"Numerous studies have been conducted to assess the role of human errors in accidents in different industries. Human reliability analysis (HRA) has drawn a great deal of attention among safety engineers and risk assessment analyzers. Despite all technical advances and the development of processes, damaging and catastrophic accidents still happen in many industries. Human Error Assessment and Reduction Technique (HEART) and Cognitive Reliability and Error Analysis Method (CREAM) methods were compared with the hierarchical fuzzy system in a steel industry to investigate the human error. This study was carried out in a rolling unit of the steel industry, which has four control rooms, three shifts, and a total of 46 technicians and operators. After observing the work process, reviewing the documents, and interviewing each of the operators, the worksheets of each research method were completed. CREAM and HEART methods were defined in the hierarchical fuzzy system and the necessary rules were analyzed. The findings of the study indicated that CREAM was more successful than HEART in showing a better capability to capture task interactions and dependencies as well as logical estimation of the HEP in the plant studied. Given the nature of the tasks in the studied plant and interactions and dependencies among tasks, it seems that CREAM is a better method in comparison with the HEART method to identify errors and calculate the HEP. \n ","PeriodicalId":52667,"journal":{"name":"International Journal of Occupational Hygiene","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Occupational Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijoh.v13i2.8372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Numerous studies have been conducted to assess the role of human errors in accidents in different industries. Human reliability analysis (HRA) has drawn a great deal of attention among safety engineers and risk assessment analyzers. Despite all technical advances and the development of processes, damaging and catastrophic accidents still happen in many industries. Human Error Assessment and Reduction Technique (HEART) and Cognitive Reliability and Error Analysis Method (CREAM) methods were compared with the hierarchical fuzzy system in a steel industry to investigate the human error. This study was carried out in a rolling unit of the steel industry, which has four control rooms, three shifts, and a total of 46 technicians and operators. After observing the work process, reviewing the documents, and interviewing each of the operators, the worksheets of each research method were completed. CREAM and HEART methods were defined in the hierarchical fuzzy system and the necessary rules were analyzed. The findings of the study indicated that CREAM was more successful than HEART in showing a better capability to capture task interactions and dependencies as well as logical estimation of the HEP in the plant studied. Given the nature of the tasks in the studied plant and interactions and dependencies among tasks, it seems that CREAM is a better method in comparison with the HEART method to identify errors and calculate the HEP.