{"title":"Holomorphic Path Integrals in Tangent Space for Flat Manifolds","authors":"Guillermo Capobianco, W. Reartes","doi":"10.7546/jgsp-55-2020-21-37","DOIUrl":null,"url":null,"abstract":"In this paper we study the quantum evolution in a flat Riemannian manifold. The holomorphic functions are defined on the cotangent bundle of this manifold. We construct Hilbert spaces of holomorphic functions in which the scalar product is defined using the exponential map. The quantum evolution is proposed by means of an infinitesimal propagator and the holomorphic Feynman integral is developed via the exponential map. The integration corresponding to each step of the Feynman integral is performed in the tangent space. Moreover, in the case of $S^1$, the method proposed in this paper naturally takes into account paths that must be included in the development of the corresponding Feynman integral.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-55-2020-21-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the quantum evolution in a flat Riemannian manifold. The holomorphic functions are defined on the cotangent bundle of this manifold. We construct Hilbert spaces of holomorphic functions in which the scalar product is defined using the exponential map. The quantum evolution is proposed by means of an infinitesimal propagator and the holomorphic Feynman integral is developed via the exponential map. The integration corresponding to each step of the Feynman integral is performed in the tangent space. Moreover, in the case of $S^1$, the method proposed in this paper naturally takes into account paths that must be included in the development of the corresponding Feynman integral.
期刊介绍:
The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.