Adiabatic limits of anti-self-dual connections on collapsed $K3$ surfaces

IF 1.3 1区 数学 Q1 MATHEMATICS
V. Datar, Adam Jacob, Yuguang Zhang
{"title":"Adiabatic limits of anti-self-dual connections on collapsed $K3$ surfaces","authors":"V. Datar, Adam Jacob, Yuguang Zhang","doi":"10.4310/JDG/1622743140","DOIUrl":null,"url":null,"abstract":"We prove a convergence result for a family of Yang-Mills connections over an elliptic $K3$ surface $M$ as the fibers collapse. In particular, assume $M$ is projective, admits a section, and has singular fibers of Kodaira type $I_1$ and type $II$. Let $\\Xi_{t_k}$ be a sequence of $SU(n)$ connections on a principal $SU(n)$ bundle over $M$, that are anti-self-dual with respect to a sequence of Ricci flat metrics collapsing the fibers of $M$. Given certain non-degeneracy assumptions on the spectral covers induced by $\\bar\\partial_{\\Xi_{t_k}}$, we show that away from a finite number of fibers, the curvature $F_{\\Xi_{t_k}}$ is locally bounded in $C^0$, the connections converge along a subsequence (and modulo unitary gauge change) in $L^p_1$ to a limiting $L^p_1$ connection $\\Xi_0$, and the restriction of $\\Xi_0$ to any fiber is $C^{1,\\alpha}$ gauge equivalent to a flat connection with holomorphic structure determined by the sequence of spectral covers. Additionally, we relate the connections $\\Xi_{t_k}$ to a converging family of special Lagrangian multi-sections in the mirror HyperK\\\"ahler structure, addressing a conjecture of Fukaya in this setting.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1622743140","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We prove a convergence result for a family of Yang-Mills connections over an elliptic $K3$ surface $M$ as the fibers collapse. In particular, assume $M$ is projective, admits a section, and has singular fibers of Kodaira type $I_1$ and type $II$. Let $\Xi_{t_k}$ be a sequence of $SU(n)$ connections on a principal $SU(n)$ bundle over $M$, that are anti-self-dual with respect to a sequence of Ricci flat metrics collapsing the fibers of $M$. Given certain non-degeneracy assumptions on the spectral covers induced by $\bar\partial_{\Xi_{t_k}}$, we show that away from a finite number of fibers, the curvature $F_{\Xi_{t_k}}$ is locally bounded in $C^0$, the connections converge along a subsequence (and modulo unitary gauge change) in $L^p_1$ to a limiting $L^p_1$ connection $\Xi_0$, and the restriction of $\Xi_0$ to any fiber is $C^{1,\alpha}$ gauge equivalent to a flat connection with holomorphic structure determined by the sequence of spectral covers. Additionally, we relate the connections $\Xi_{t_k}$ to a converging family of special Lagrangian multi-sections in the mirror HyperK\"ahler structure, addressing a conjecture of Fukaya in this setting.
坍塌$K3$表面上反自对偶连接的绝热极限
我们证明了当纤维坍缩时,在椭圆$K3$表面$M$上的Yang-Mills连接族的收敛结果。特别地,假设$M$是射影的,允许一个区间,并且具有Kodaira类型$I_1$和类型$II$的奇异纤维。设$\Xi_{t_k}$是$M$上的主$SU(n)$丛上的一系列$SU(n)$连接,这些连接相对于折叠$M$的纤维的Ricci平坦度量的序列是反自的。给定由$\bar\partial_{\Xi_{t_k}}$引起的谱覆盖上的某些非简并性假设,我们证明,在有限数量的纤维之外,曲率$F_{\Si_{t_k}}$在$C^0$中是局部有界的,连接沿着$L^p_1$中的子序列(和模么正规范变化)收敛到极限$L^p_1$连接$\Xi_0$,并且$\Xi_0$对任何纤维的限制是$C^{1。此外,我们将连接$\Xi_{t_k}$与镜像HyperK\“ahler结构中的特殊拉格朗日多重截面的收敛族联系起来,解决了Fukaya在这种情况下的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信