PEMANTAUAN PROSES INJEKSI AIR PADA LAPANGAN “SMR” CEKUNGAN SUMATERA TENGAH BERDASARKAN DATA ANOMALI TIME-LAPSE MICROGRAVITY

JGE Pub Date : 2020-01-17 DOI:10.23960/JGE.V4I1.1060
Dian Pratiwi, Agung Wiyono
{"title":"PEMANTAUAN PROSES INJEKSI AIR PADA LAPANGAN “SMR” CEKUNGAN SUMATERA TENGAH BERDASARKAN DATA ANOMALI TIME-LAPSE MICROGRAVITY","authors":"Dian Pratiwi, Agung Wiyono","doi":"10.23960/JGE.V4I1.1060","DOIUrl":null,"url":null,"abstract":"There had been done a regional research about monitoring of injection process in \"SMR\" field of Central Sumatera Basin using microgravity method. The time-lapse microgravity method is the development of the gravity method (x, y, z) by adding the fourth dimension of time (t). Monitoring is carried out on production fields that have performed EOR (Enchanced Oil Recovery) ie the process of injecting water into the reservoir to push and drain the remnants of oil in the pores of the reservoir rock to the production well. The microgravity data processing is done by finding the difference between observed gravity values between the first and the second measurements, then performing the spectral analysis to separate the anomaly at reservoir depth and noise. The time-lapse microgravity anomaly has a value of -132.28 μGal to 54.89 μGal. Positive anomalies are related to the injection process, whereas the negative anomalies are related to the production process in the study area. Filtering analysis shows that there are two zones of fluid dynamics, which is due to the process of surface water dynamics (groundwater above reservoir) and that occurs in the reservoir. Fluid reduction zones occur in areas with more production wells than injection wells. Density reduction occurs in the reservoir layer at a depth of 600 m to 1000 m with a maximum reduction value of -3.1x10-3 gr / cm3. The gravity time-lapse inversion model shows the existence of several injection wells that are less effective and therefore need to be stopped injecting.","PeriodicalId":34835,"journal":{"name":"JGE","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JGE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/JGE.V4I1.1060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There had been done a regional research about monitoring of injection process in "SMR" field of Central Sumatera Basin using microgravity method. The time-lapse microgravity method is the development of the gravity method (x, y, z) by adding the fourth dimension of time (t). Monitoring is carried out on production fields that have performed EOR (Enchanced Oil Recovery) ie the process of injecting water into the reservoir to push and drain the remnants of oil in the pores of the reservoir rock to the production well. The microgravity data processing is done by finding the difference between observed gravity values between the first and the second measurements, then performing the spectral analysis to separate the anomaly at reservoir depth and noise. The time-lapse microgravity anomaly has a value of -132.28 μGal to 54.89 μGal. Positive anomalies are related to the injection process, whereas the negative anomalies are related to the production process in the study area. Filtering analysis shows that there are two zones of fluid dynamics, which is due to the process of surface water dynamics (groundwater above reservoir) and that occurs in the reservoir. Fluid reduction zones occur in areas with more production wells than injection wells. Density reduction occurs in the reservoir layer at a depth of 600 m to 1000 m with a maximum reduction value of -3.1x10-3 gr / cm3. The gravity time-lapse inversion model shows the existence of several injection wells that are less effective and therefore need to be stopped injecting.
采用微重力方法对中苏门答腊盆地“SMR”油田的注水过程进行了区域监测研究。延时微重力法是重力法(x,y,z)的发展,增加了时间的第四个维度(t)。对已经进行EOR(提高采收率)的生产油田进行监测,即向储层注水,将储层岩石孔隙中的残余石油推送到生产井。微重力数据处理是通过找到第一次和第二次测量之间的观测重力值之间的差异来完成的,然后进行光谱分析以分离储层深度的异常和噪声。延时微重力异常值为-132.28μGal至54.89μGal。正异常与注入过程有关,而负异常与研究区域的生产过程有关。过滤分析表明,流体动力学有两个区域,一个是由于地表水动力学过程(水库上方的地下水),另一个是发生在水库中。流体减少区出现在生产井比注入井多的地区。密度降低发生在600 m至1000 m深度的储层中,最大降低值为-3.1x10-3 gr/cm3。重力时间推移反演模型表明,存在几个效率较低的注入井,因此需要停止注入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JGE
JGE
自引率
0.00%
发文量
16
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信