{"title":"Feature selection in a discrete feature space based on fuzzy conditional information entropy iterative model and matrix operation","authors":"Zhaowen Li, Yiying Chen","doi":"10.1080/03081079.2023.2196620","DOIUrl":null,"url":null,"abstract":"A discrete feature space consists of the set of samples, the set of categorical attributes (features) describing the samples and a decision attribute. Generally, many feature selection algorithms for a discrete feature space are based on the lower approximation or information entropy. However, the calculation of the lower approximation is more cumbersome, and information entropy may result based on equivalence class in a poor selection of features. This paper proposes feature selection algorithm for a discrete feature space by using fuzzy conditional information entropy iterative strategy and matrix operation. Firstly, the fuzzy symmetry relation induced by a discrete feature space is defined. Then, fuzzy conditional and joint information entropy for a discrete feature space are presented, and some properties are obtained. Subsequently, fuzzy conditional information entropy iterative model (FCIEI-model) is proposed. Moreover, difference, block diagonal, and decision block diagonal matrices are introduced. Next, a feature selection algorithm (denoted as FDM-algorithm) on account of FCIEI-model and matrix operations is designed and its time complexity is analyzed. Finally, the performance of the algorithm is evaluated through a series of experiments. The results show that the given algorithm is better than the existing algorithms.","PeriodicalId":50322,"journal":{"name":"International Journal of General Systems","volume":"52 1","pages":"597 - 635"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/03081079.2023.2196620","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A discrete feature space consists of the set of samples, the set of categorical attributes (features) describing the samples and a decision attribute. Generally, many feature selection algorithms for a discrete feature space are based on the lower approximation or information entropy. However, the calculation of the lower approximation is more cumbersome, and information entropy may result based on equivalence class in a poor selection of features. This paper proposes feature selection algorithm for a discrete feature space by using fuzzy conditional information entropy iterative strategy and matrix operation. Firstly, the fuzzy symmetry relation induced by a discrete feature space is defined. Then, fuzzy conditional and joint information entropy for a discrete feature space are presented, and some properties are obtained. Subsequently, fuzzy conditional information entropy iterative model (FCIEI-model) is proposed. Moreover, difference, block diagonal, and decision block diagonal matrices are introduced. Next, a feature selection algorithm (denoted as FDM-algorithm) on account of FCIEI-model and matrix operations is designed and its time complexity is analyzed. Finally, the performance of the algorithm is evaluated through a series of experiments. The results show that the given algorithm is better than the existing algorithms.
期刊介绍:
International Journal of General Systems is a periodical devoted primarily to the publication of original research contributions to system science, basic as well as applied. However, relevant survey articles, invited book reviews, bibliographies, and letters to the editor are also published.
The principal aim of the journal is to promote original systems ideas (concepts, principles, methods, theoretical or experimental results, etc.) that are broadly applicable to various kinds of systems. The term “general system” in the name of the journal is intended to indicate this aim–the orientation to systems ideas that have a general applicability. Typical subject areas covered by the journal include: uncertainty and randomness; fuzziness and imprecision; information; complexity; inductive and deductive reasoning about systems; learning; systems analysis and design; and theoretical as well as experimental knowledge regarding various categories of systems. Submitted research must be well presented and must clearly state the contribution and novelty. Manuscripts dealing with particular kinds of systems which lack general applicability across a broad range of systems should be sent to journals specializing in the respective topics.