{"title":"Weighted holomorphic Dirichlet series and composition operators with polynomial symbols","authors":"E. Fricain, Camille Mau","doi":"10.7146/math.scand.a-129686","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\\ell^2$ is cyclic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-129686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\ell^2$ is cyclic.