{"title":"Some Optimal Conditions for the ASCLT.","authors":"István Berkes, Siegfried Hörmann","doi":"10.1007/s10959-023-01245-w","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo></mrow></math> be independent random variables with <math><mrow><mi>E</mi><msub><mi>X</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn></mrow></math> and <math><mrow><msubsup><mi>σ</mi><mrow><mi>k</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup><mo>:</mo><mo>=</mo><mi>E</mi><msubsup><mi>X</mi><mrow><mi>k</mi></mrow><mn>2</mn></msubsup><mo><</mo><mi>∞</mi></mrow></math> <math><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></math>. Set <math><mrow><msub><mi>S</mi><mi>k</mi></msub><mo>=</mo><msub><mi>X</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>X</mi><mi>k</mi></msub></mrow></math> and assume that <math><mrow><msubsup><mi>s</mi><mrow><mi>k</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup><mo>:</mo><mo>=</mo><mi>E</mi><msubsup><mi>S</mi><mi>k</mi><mn>2</mn></msubsup><mo>→</mo><mi>∞</mi></mrow></math>. We prove that under the Kolmogorov condition <dispformula><math><mrow><mtable><mtr><mtd><mrow><mrow><mo>|</mo></mrow><msub><mi>X</mi><mi>n</mi></msub><mrow><mo>|</mo><mo>≤</mo></mrow><msub><mi>L</mi><mi>n</mi></msub><mo>,</mo><mspace></mspace><msub><mi>L</mi><mi>n</mi></msub><mo>=</mo><mi>o</mi><mrow><mo>(</mo><msub><mi>s</mi><mi>n</mi></msub><mo>/</mo><msup><mrow><mo>(</mo><mo>log</mo><mo>log</mo><msub><mi>s</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>we have <dispformula><math><mrow><mtable><mtr><mtd><mrow><mfrac><mn>1</mn><mrow><mo>log</mo><msubsup><mi>s</mi><mrow><mi>n</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup></mrow></mfrac><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><msubsup><mi>σ</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup><msubsup><mi>s</mi><mrow><mi>k</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup></mfrac><mi>f</mi><mfenced><mfrac><msub><mi>S</mi><mi>k</mi></msub><msub><mi>s</mi><mi>k</mi></msub></mfrac></mfenced><mo>→</mo><mfrac><mn>1</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt></mfrac><msub><mo>∫</mo><mi>R</mi></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>/</mo><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mspace></mspace><mrow><mi>a</mi><mo>.</mo><mi>s</mi><mo>.</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>for any almost everywhere continuous function <math><mrow><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow></math> satisfying <math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><msup><mi>e</mi><mrow><mi>γ</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></mrow></math>, <math><mrow><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>. We also show that replacing the <i>o</i> in (1) by <i>O</i>, relation (2) becomes generally false. Finally, in the case when (1) is not assumed, we give an optimal condition for (2) in terms of the remainder term in the Wiener approximation of the partial sum process <math><mrow><mo>{</mo><msub><mi>S</mi><mi>n</mi></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math> by a Wiener process.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01245-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be independent random variables with and . Set and assume that . We prove that under the Kolmogorov condition we have for any almost everywhere continuous function satisfying , . We also show that replacing the o in (1) by O, relation (2) becomes generally false. Finally, in the case when (1) is not assumed, we give an optimal condition for (2) in terms of the remainder term in the Wiener approximation of the partial sum process by a Wiener process.