Some Optimal Conditions for the ASCLT.

Pub Date : 2024-01-01 Epub Date: 2023-05-06 DOI:10.1007/s10959-023-01245-w
István Berkes, Siegfried Hörmann
{"title":"Some Optimal Conditions for the ASCLT.","authors":"István Berkes, Siegfried Hörmann","doi":"10.1007/s10959-023-01245-w","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mrow><msub><mi>X</mi><mn>1</mn></msub><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo></mrow></math> be independent random variables with <math><mrow><mi>E</mi><msub><mi>X</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn></mrow></math> and <math><mrow><msubsup><mi>σ</mi><mrow><mi>k</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup><mo>:</mo><mo>=</mo><mi>E</mi><msubsup><mi>X</mi><mrow><mi>k</mi></mrow><mn>2</mn></msubsup><mo><</mo><mi>∞</mi></mrow></math> <math><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></math>. Set <math><mrow><msub><mi>S</mi><mi>k</mi></msub><mo>=</mo><msub><mi>X</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>X</mi><mi>k</mi></msub></mrow></math> and assume that <math><mrow><msubsup><mi>s</mi><mrow><mi>k</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup><mo>:</mo><mo>=</mo><mi>E</mi><msubsup><mi>S</mi><mi>k</mi><mn>2</mn></msubsup><mo>→</mo><mi>∞</mi></mrow></math>. We prove that under the Kolmogorov condition <dispformula><math><mrow><mtable><mtr><mtd><mrow><mrow><mo>|</mo></mrow><msub><mi>X</mi><mi>n</mi></msub><mrow><mo>|</mo><mo>≤</mo></mrow><msub><mi>L</mi><mi>n</mi></msub><mo>,</mo><mspace></mspace><msub><mi>L</mi><mi>n</mi></msub><mo>=</mo><mi>o</mi><mrow><mo>(</mo><msub><mi>s</mi><mi>n</mi></msub><mo>/</mo><msup><mrow><mo>(</mo><mo>log</mo><mo>log</mo><msub><mi>s</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>we have <dispformula><math><mrow><mtable><mtr><mtd><mrow><mfrac><mn>1</mn><mrow><mo>log</mo><msubsup><mi>s</mi><mrow><mi>n</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup></mrow></mfrac><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><msubsup><mi>σ</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup><msubsup><mi>s</mi><mrow><mi>k</mi></mrow><mrow><mspace></mspace><mn>2</mn></mrow></msubsup></mfrac><mi>f</mi><mfenced><mfrac><msub><mi>S</mi><mi>k</mi></msub><msub><mi>s</mi><mi>k</mi></msub></mfrac></mfenced><mo>→</mo><mfrac><mn>1</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt></mfrac><msub><mo>∫</mo><mi>R</mi></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>/</mo><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mspace></mspace><mrow><mi>a</mi><mo>.</mo><mi>s</mi><mo>.</mo></mrow></mrow></mtd></mtr></mtable></mrow></math></dispformula>for any almost everywhere continuous function <math><mrow><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow></math> satisfying <math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><msup><mi>e</mi><mrow><mi>γ</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></mrow></math>, <math><mrow><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>. We also show that replacing the <i>o</i> in (1) by <i>O</i>, relation (2) becomes generally false. Finally, in the case when (1) is not assumed, we give an optimal condition for (2) in terms of the remainder term in the Wiener approximation of the partial sum process <math><mrow><mo>{</mo><msub><mi>S</mi><mi>n</mi></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math> by a Wiener process.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01245-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X1,X2, be independent random variables with EXk=0 and σk2:=EXk2< (k1). Set Sk=X1++Xk and assume that sk2:=ESk2. We prove that under the Kolmogorov condition |Xn|Ln,Ln=o(sn/(loglogsn)1/2)we have 1logsn2k=1nσk+12sk2fSksk12πRf(x)e-x2/2dxa.s.for any almost everywhere continuous function f:RR satisfying |f(x)|eγx2, γ<1/2. We also show that replacing the o in (1) by O, relation (2) becomes generally false. Finally, in the case when (1) is not assumed, we give an optimal condition for (2) in terms of the remainder term in the Wiener approximation of the partial sum process {Sn,n1} by a Wiener process.

分享
查看原文
ASCLT的一些最优条件
设 X1,X2,...为独立随机变量,EXk=0,σk2:=EXk2∞(k≥1)。设 Sk=X1+⋯+Xk 并假设 sk2:=ESk2→∞ 。我们证明,对于满足|f(x)|≤eγx2, γ1/2的任意几乎无处不在的连续函数f:R→R,在科尔莫哥洛夫条件|Xn|≤Ln,Ln=o(sn/(loglogsn)1/2)下,有1logsn2∑k=1nσk+12sk2fSksk→12π∫Rf(x)e-x2/2dxa.s.。我们还证明,把 (1) 中的 o 换成 O,关系式 (2) 一般会变成假的。最后,在不假设 (1) 的情况下,我们给出了 (2) 的最优条件,即用维纳过程对部分和过程 {Sn,n≥1} 进行维纳逼近时的余项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信