Ostrowski quotients for finite extensions of number fields

IF 0.7 3区 数学 Q2 MATHEMATICS
Ehsan Shahoseini, A. Rajaei, A. Maarefparvar
{"title":"Ostrowski quotients for finite extensions of number fields","authors":"Ehsan Shahoseini, A. Rajaei, A. Maarefparvar","doi":"10.2140/pjm.2022.321.415","DOIUrl":null,"url":null,"abstract":"For $L/K$ a finite Galois extension of number fields, the relative P\\'olya group $\\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\\Ost(L/K)$ as the cokernel of the capitulation map into $\\Po(L/K)$, and generalize some known results for $\\Po(L/\\mathbb{Q})$ to $\\Ost(L/K)$.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.415","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

For $L/K$ a finite Galois extension of number fields, the relative P\'olya group $\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\Po(L/K)$, in the works of Brumer-Rosen and Zantema, we find short proofs for some classical results in the literatur. Then we define the ``Ostrowski quotient'' $\Ost(L/K)$ as the cokernel of the capitulation map into $\Po(L/K)$, and generalize some known results for $\Po(L/\mathbb{Q})$ to $\Ost(L/K)$.
数域有限扩展的Ostrowski商
对于数域的有限Galois扩张$L/K$,相对P′olya群$\Po(L/K)$与$L/K$中的强模糊理想类群重合。本文利用Brumer-Rosen和Zantema的一个已知的与$\Po(L/K)$有关的精确序列,在文献中找到了一些经典结果的简短证明。然后,我们将“Ostrowski商”$\Ost(L/K)$定义为投降映射到$\Po(L/K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信