Bayesian Estimation of Latent Space Item Response Models with JAGS, Stan, and NIMBLE in R

Psych Pub Date : 2023-05-11 DOI:10.3390/psych5020027
Jinwen Luo, L. De Carolis, Biao Zeng, M. Jeon
{"title":"Bayesian Estimation of Latent Space Item Response Models with JAGS, Stan, and NIMBLE in R","authors":"Jinwen Luo, L. De Carolis, Biao Zeng, M. Jeon","doi":"10.3390/psych5020027","DOIUrl":null,"url":null,"abstract":"The latent space item response model (LSIRM) is a newly-developed approach to analyzing and visualizing conditional dependencies in item response data, manifested as the interactions between respondents and items, between respondents, and between items. This paper provides a practical guide to the Bayesian estimation of LSIRM using three open-source software options, JAGS, Stan, and NIMBLE in R. By means of an empirical example, we illustrate LSIRM estimation, providing details on the model specification and implementation, convergence diagnostics, model fit evaluations and interaction map visualizations.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The latent space item response model (LSIRM) is a newly-developed approach to analyzing and visualizing conditional dependencies in item response data, manifested as the interactions between respondents and items, between respondents, and between items. This paper provides a practical guide to the Bayesian estimation of LSIRM using three open-source software options, JAGS, Stan, and NIMBLE in R. By means of an empirical example, we illustrate LSIRM estimation, providing details on the model specification and implementation, convergence diagnostics, model fit evaluations and interaction map visualizations.
基于JAGS、Stan和NIMBLE的潜在空间项目反应模型的贝叶斯估计
潜在空间项目反应模型(LSIRM)是一种分析和可视化项目反应数据条件依赖性的新方法,主要表现为被调查者与项目之间、被调查者与项目之间以及项目与项目之间的相互作用。本文利用JAGS、Stan和NIMBLE三种开源软件对LSIRM的贝叶斯估计进行了实践指导。通过一个实例,我们阐述了LSIRM的估计,详细介绍了模型规范和实现、收敛诊断、模型拟合评估和交互图可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信