{"title":"Well-posedness for the Cauchy Problem of the Modified Zakharov-Kuznetsov Equation","authors":"S. Kinoshita","doi":"10.1619/fesi.65.139","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\\mathbb{R}^2)$ for $s \\geq 1/4$. If $d \\geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\\mathbb{R}^d)$ where $s_c = d/2-1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.65.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper is concerned with the Cauchy problem of the modified Zakharov-Kuznetsov equation on $\mathbb{R}^d$. If $d=2$, we prove the sharp estimate which implies local in time well-posedness in the Sobolev space $H^s(\mathbb{R}^2)$ for $s \geq 1/4$. If $d \geq 3$, by employing $U^p$ and $V^p$ spaces, we establish the small data global well-posedness in the scaling critical Sobolev space $H^{s_c}(\mathbb{R}^d)$ where $s_c = d/2-1$.