{"title":"Optical design of centered-receiver trough-based CPV system","authors":"I. Ullah","doi":"10.1117/1.JPE.11.035502","DOIUrl":null,"url":null,"abstract":"Abstract. Concentrating photovoltaic (CPV) systems require less area of the solar cell while achieving a high efficiency. One of the development factors in the CPV includes the irradiance uniformity over the solar cell. To overcome this issue, a parabolic trough-based optical design is proposed using two nonimaging secondary reflectors: reflective grooves and compound parabolic concentrator (CPC). The reflective grooves convert the line focus to a square shape irradiance distribution, and the CPC is used for redirecting the rays to the receiver. The proposed system delivers the concentrated light over the solar cell having a size of 30 × 30 mm2 at the center of the trough. The CPV system reduces the number of cells compared with conventional trough-based CPV systems by attaining the concentration ratio of 285. The results indicate that the system has achieved an optical efficiency of 60% at an acceptance angle of ±2 deg. The detailed optical design and raytracing simulation are presented showing that the proposed concentrator can achieve significantly higher overall concentration while maintaining irradiance uniformity.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"11 1","pages":"035502 - 035502"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.11.035502","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Concentrating photovoltaic (CPV) systems require less area of the solar cell while achieving a high efficiency. One of the development factors in the CPV includes the irradiance uniformity over the solar cell. To overcome this issue, a parabolic trough-based optical design is proposed using two nonimaging secondary reflectors: reflective grooves and compound parabolic concentrator (CPC). The reflective grooves convert the line focus to a square shape irradiance distribution, and the CPC is used for redirecting the rays to the receiver. The proposed system delivers the concentrated light over the solar cell having a size of 30 × 30 mm2 at the center of the trough. The CPV system reduces the number of cells compared with conventional trough-based CPV systems by attaining the concentration ratio of 285. The results indicate that the system has achieved an optical efficiency of 60% at an acceptance angle of ±2 deg. The detailed optical design and raytracing simulation are presented showing that the proposed concentrator can achieve significantly higher overall concentration while maintaining irradiance uniformity.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.