{"title":"The Oberbeck–Boussinesq system with non-local boundary conditions","authors":"A. Abbatiello, E. Feireisl","doi":"10.1090/qam/1635","DOIUrl":null,"url":null,"abstract":"<p>We consider the Oberbeck–Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier–Stokes–Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket 0 comma upper T Subscript normal m normal a normal x Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">m</mml:mi>\n <mml:mi mathvariant=\"normal\">a</mml:mi>\n <mml:mi mathvariant=\"normal\">x</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[0, T_{\\mathrm {max}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript normal m normal a normal x Baseline equals normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">m</mml:mi>\n <mml:mi mathvariant=\"normal\">a</mml:mi>\n <mml:mi mathvariant=\"normal\">x</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T_{\\mathrm {max}} = \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the two-dimensional setting.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
We consider the Oberbeck–Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier–Stokes–Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval [0,Tmax)[0, T_{\mathrm {max}}). Moreover, Tmax=∞T_{\mathrm {max}} = \infty in the two-dimensional setting.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.