Hardware Design for Machine Learning

P. Jawandhiya
{"title":"Hardware Design for Machine Learning","authors":"P. Jawandhiya","doi":"10.5121/IJAIA.2018.9105","DOIUrl":null,"url":null,"abstract":"Things like growing volumes and varieties of available data, cheaper and more powerful computational processing, data storage and large-value predictions that can guide better decisions and smart actions in real time without human intervention are playing critical role in this age. All of these require models that can automatically analyse large complex data and deliver quick accurate results – even on a very large scale. Machine learning plays a significant role in developing these models. The applications of machine learning range from speech and object recognition to analysis and prediction of finance markets. Artificial Neural Network is one of the important algorithms of machine learning that is inspired by the structure and functional aspects of the biological neural networks. In this paper, we discuss the purpose, representation and classification methods for developing hardware for machine learning with the main focus on neural networks. This paper also presents the requirements, design issues and optimization techniques for building hardware architecture of neural networks.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"9 1","pages":"63-84"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2018.9105","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2018.9105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Things like growing volumes and varieties of available data, cheaper and more powerful computational processing, data storage and large-value predictions that can guide better decisions and smart actions in real time without human intervention are playing critical role in this age. All of these require models that can automatically analyse large complex data and deliver quick accurate results – even on a very large scale. Machine learning plays a significant role in developing these models. The applications of machine learning range from speech and object recognition to analysis and prediction of finance markets. Artificial Neural Network is one of the important algorithms of machine learning that is inspired by the structure and functional aspects of the biological neural networks. In this paper, we discuss the purpose, representation and classification methods for developing hardware for machine learning with the main focus on neural networks. This paper also presents the requirements, design issues and optimization techniques for building hardware architecture of neural networks.
机器学习硬件设计
不断增长的可用数据量和种类、更便宜、更强大的计算处理、数据存储和大价值预测,这些都可以在没有人为干预的情况下实时指导更好的决策和智能行动,在这个时代发挥着至关重要的作用。所有这些都需要能够自动分析大型复杂数据并提供快速准确结果的模型——即使是在非常大的规模上。机器学习在开发这些模型中扮演着重要的角色。机器学习的应用范围从语音和对象识别到金融市场的分析和预测。人工神经网络是机器学习的重要算法之一,其灵感来自于生物神经网络的结构和功能方面。在本文中,我们讨论了开发机器学习硬件的目的、表示和分类方法,主要集中在神经网络上。本文还介绍了构建神经网络硬件体系结构的要求、设计问题和优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信