Vehicle state estimation based on extended Kalman filter and radial basis function neural networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yunfei Zha, Xinye Liu, Fangwu Ma, CC Liu
{"title":"Vehicle state estimation based on extended Kalman filter and radial basis function neural networks","authors":"Yunfei Zha, Xinye Liu, Fangwu Ma, CC Liu","doi":"10.1177/15501329221102730","DOIUrl":null,"url":null,"abstract":"To improve the reliability of vehicle state parameter estimation, a vehicle state fusion estimation method based on dichotomy is proposed. An extended Kalman filter algorithm is designed based on the vehicle 3 degrees of freedom dynamic model. Meanwhile, considering the influence of dynamic model and sensor noise and its coefficient selection on the estimation results, a radial basis function neural network estimation algorithm is designed. To further improve the reliability of the estimation algorithm, a method of estimation algorithm fusion is proposed based on the idea of mutual compensation between model- and data-driven estimation algorithms. The weights of the estimation results of different algorithms are assigned through the dichotomy. The redundancy and fusion of estimation algorithms can improve estimation performance. The effectiveness of the fusion method is verified by the co-simulation of MATLAB/Simulink and CarSim, and the real vehicle test. The results show that the change trend of the estimation result is consistent with the actual state parameters change trend, and the estimation accuracy after algorithm fusion is significantly improved compared to a single extended Kalman filter or radial basis function.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221102730","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

To improve the reliability of vehicle state parameter estimation, a vehicle state fusion estimation method based on dichotomy is proposed. An extended Kalman filter algorithm is designed based on the vehicle 3 degrees of freedom dynamic model. Meanwhile, considering the influence of dynamic model and sensor noise and its coefficient selection on the estimation results, a radial basis function neural network estimation algorithm is designed. To further improve the reliability of the estimation algorithm, a method of estimation algorithm fusion is proposed based on the idea of mutual compensation between model- and data-driven estimation algorithms. The weights of the estimation results of different algorithms are assigned through the dichotomy. The redundancy and fusion of estimation algorithms can improve estimation performance. The effectiveness of the fusion method is verified by the co-simulation of MATLAB/Simulink and CarSim, and the real vehicle test. The results show that the change trend of the estimation result is consistent with the actual state parameters change trend, and the estimation accuracy after algorithm fusion is significantly improved compared to a single extended Kalman filter or radial basis function.
基于扩展卡尔曼滤波和径向基函数神经网络的车辆状态估计
为了提高车辆状态参数估计的可靠性,提出了一种基于二分法的车辆状态融合估计方法。基于车辆三自由度动力学模型,设计了一种扩展卡尔曼滤波算法。同时,考虑到动态模型和传感器噪声及其系数选择对估计结果的影响,设计了一种径向基函数神经网络估计算法。为了进一步提高估计算法的可靠性,基于模型驱动和数据驱动估计算法之间相互补偿的思想,提出了一种估计算法融合的方法。通过二分法来分配不同算法的估计结果的权重。估计算法的冗余和融合可以提高估计性能。通过MATLAB/Simulink和CarSim的联合仿真以及实车试验验证了融合方法的有效性。结果表明,估计结果的变化趋势与实际状态参数的变化趋势一致,与单个扩展卡尔曼滤波器或径向基函数相比,算法融合后的估计精度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信