{"title":"Finite-Time Static Output-Feedback H∞ Control for Discrete-Time Singular Markov Jump Systems Based on Event-Triggered Scheme","authors":"X. Ji, Xue-Wen Yan","doi":"10.3390/mca28010001","DOIUrl":null,"url":null,"abstract":"The problem of finite-time static output feedback H∞ control for a class of discrete-time singular Markov jump systems is studied in this paper. With the consideration of network transmission delay and event-triggered schemes, a closed-loop model of a discrete-time singular Markov jump system is established under the static output feedback control law, and the corresponding sufficient condition is given to guarantee this system will be regular, causal, finite-time bounded and satisfy the given H∞ performance. Based on the matrix decomposition algorithm, the output feedback controller can be reduced to a feasible solution of a set of strict matrix inequalities. A numerical example is presented to show the effectiveness of the presented method.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of finite-time static output feedback H∞ control for a class of discrete-time singular Markov jump systems is studied in this paper. With the consideration of network transmission delay and event-triggered schemes, a closed-loop model of a discrete-time singular Markov jump system is established under the static output feedback control law, and the corresponding sufficient condition is given to guarantee this system will be regular, causal, finite-time bounded and satisfy the given H∞ performance. Based on the matrix decomposition algorithm, the output feedback controller can be reduced to a feasible solution of a set of strict matrix inequalities. A numerical example is presented to show the effectiveness of the presented method.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.