Statistical inference for a stochastic wave equation with Malliavin–Stein method

Pub Date : 2022-02-02 DOI:10.1080/07362994.2022.2029712
F. Delgado-Vences, J. J. Pavon-Español
{"title":"Statistical inference for a stochastic wave equation with Malliavin–Stein method","authors":"F. Delgado-Vences, J. J. Pavon-Español","doi":"10.1080/07362994.2022.2029712","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study asymptotic properties of the maximum likelihood estimator (MLE) for the speed of a stochastic wave equation. We follow a well-known spectral approach to write the solution as a Fourier series, then we project the solution to a N-finite dimensional space and find the estimator as a function of the time and N. We then show consistency of the MLE using classical stochastic analysis. Afterward, we prove the asymptotic normality using the Malliavin–Stein method. We also study asymptotic properties of a discretized version of the MLE for the parameter. We provide this asymptotic analysis of the proposed estimator as the number of Fourier modes, N, used in the estimation and the observation time go to infinity. Finally, we illustrate the theoretical results with some numerical experiments.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2029712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we study asymptotic properties of the maximum likelihood estimator (MLE) for the speed of a stochastic wave equation. We follow a well-known spectral approach to write the solution as a Fourier series, then we project the solution to a N-finite dimensional space and find the estimator as a function of the time and N. We then show consistency of the MLE using classical stochastic analysis. Afterward, we prove the asymptotic normality using the Malliavin–Stein method. We also study asymptotic properties of a discretized version of the MLE for the parameter. We provide this asymptotic analysis of the proposed estimator as the number of Fourier modes, N, used in the estimation and the observation time go to infinity. Finally, we illustrate the theoretical results with some numerical experiments.
分享
查看原文
用Malliavin-Stein方法进行随机波动方程的统计推断
摘要本文研究了随机波动方程速度的最大似然估计的渐近性质。我们遵循一种众所周知的谱方法将解写成傅立叶级数,然后我们将解投影到N-有限维空间,并找到作为时间和N的函数的估计器。然后,我们使用经典随机分析显示MLE的一致性。然后,我们用Malliavin–Stein方法证明了它的渐近正态性。我们还研究了参数MLE的离散化版本的渐近性质。当估计中使用的傅立叶模式的数量N和观测时间变为无穷大时,我们对所提出的估计器进行了渐近分析。最后,我们用一些数值实验来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信