Convergence theorems for monotone vector field inclusions and minimization problems in Hadamard spaces

Pub Date : 2023-01-01 DOI:10.1515/agms-2022-0150
S. Salisu, P. Kumam, Songpon Sriwongsa
{"title":"Convergence theorems for monotone vector field inclusions and minimization problems in Hadamard spaces","authors":"S. Salisu, P. Kumam, Songpon Sriwongsa","doi":"10.1515/agms-2022-0150","DOIUrl":null,"url":null,"abstract":"Abstract This article analyses two schemes: Mann-type and viscosity-type proximal point algorithms. Using these schemes, we establish Δ-convergence and strong convergence theorems for finding a common solution of monotone vector field inclusion problems, a minimization problem, and a common fixed point of multivalued demicontractive mappings in Hadamard spaces. We apply our results to find mean and median values of probabilities, minimize energy of measurable mappings, and solve a kinematic problem in robotic motion control. We also include a numerical example to show the applicability of the schemes. Our findings corroborate some recent findings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This article analyses two schemes: Mann-type and viscosity-type proximal point algorithms. Using these schemes, we establish Δ-convergence and strong convergence theorems for finding a common solution of monotone vector field inclusion problems, a minimization problem, and a common fixed point of multivalued demicontractive mappings in Hadamard spaces. We apply our results to find mean and median values of probabilities, minimize energy of measurable mappings, and solve a kinematic problem in robotic motion control. We also include a numerical example to show the applicability of the schemes. Our findings corroborate some recent findings.
分享
查看原文
Hadamard空间中单调向量场包含和最小化问题的收敛性定理
本文分析了两种方案:Mann型和粘性型近点算法。利用这些格式,我们建立了在Hadamard空间中寻找单调向量场包含问题的公共解、最小化问题和多值半压缩映射的公共不动点的Δ-收敛性和强收敛性定理。我们应用我们的结果来寻找概率的均值和中值,最小化可测量映射的能量,并解决机器人运动控制中的运动学问题。我们还包括了一个数值例子来说明这些方案的适用性。我们的发现证实了最近的一些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信