Embedded Eigenvalues for Water-Waves in a Three-Dimensional Channel with a Thin Screen

IF 0.8 4区 工程技术 Q3 MATHEMATICS, APPLIED
V. C. Piat, S. Nazarov, J. Taskinen
{"title":"Embedded Eigenvalues for Water-Waves in a Three-Dimensional Channel with a Thin Screen","authors":"V. C. Piat, S. Nazarov, J. Taskinen","doi":"10.1093/QJMAM/HBY002","DOIUrl":null,"url":null,"abstract":"We construct asymptotic expansions as ε → +0 for an eigenvalue embedded into the continuous spectrum of water-wave problem in a cylindrical three dimensional channel with a thin screen of thickness O(ε). The screen may be either submerged or surface-piercing, and its wetted part has a sharp edge. The channel and the screen are mirror symmetric so that imposing the Dirichlet condition in the middle plane creates an artificial positive cut-off-value Λ† of the modified spectrum. Depending on a certain integral characteristic I of the screen profiles, we find two types of asymptotics of eigenvalues, λ = Λ† − O(ε) and λ = Λ† −O(ε) in the cases I > 0 and I = 0, respectively. We prove that in the case I < 0 there are no embedded eigenvalues in the interval [0,Λ†], while this interval contains exactly one eigenvalue, if I ≥ 0. For the justification of these result, the main tools are a reduction to an abstract spectral equation and the use of the max-min-principle.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"71 1","pages":"187-220"},"PeriodicalIF":0.8000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QJMAM/HBY002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBY002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

We construct asymptotic expansions as ε → +0 for an eigenvalue embedded into the continuous spectrum of water-wave problem in a cylindrical three dimensional channel with a thin screen of thickness O(ε). The screen may be either submerged or surface-piercing, and its wetted part has a sharp edge. The channel and the screen are mirror symmetric so that imposing the Dirichlet condition in the middle plane creates an artificial positive cut-off-value Λ† of the modified spectrum. Depending on a certain integral characteristic I of the screen profiles, we find two types of asymptotics of eigenvalues, λ = Λ† − O(ε) and λ = Λ† −O(ε) in the cases I > 0 and I = 0, respectively. We prove that in the case I < 0 there are no embedded eigenvalues in the interval [0,Λ†], while this interval contains exactly one eigenvalue, if I ≥ 0. For the justification of these result, the main tools are a reduction to an abstract spectral equation and the use of the max-min-principle.
薄屏三维通道中水波的嵌入特征值
对于厚度为0 (ε)的圆柱形三维通道中嵌入到水波问题连续谱中的特征值,构造了ε→+0的渐近展开式。筛网可浸没或穿表面,其浸湿部分具有锋利的边缘。通道和屏幕是镜像对称的,因此在中间平面施加狄利克雷条件会产生修正光谱的人工正截止值Λ†。根据筛网轮廓的一个积分特征I,分别在I > 0和I = 0的情况下,得到了特征值λ = Λ†−O(ε)和λ = Λ†−O(ε)的渐近性。我们证明了在I < 0的情况下,在区间[0,Λ†]中不存在嵌入的特征值,而当I≥0时,这个区间恰好包含一个特征值。为了证明这些结果,主要的工具是简化到一个抽象的谱方程和使用最大最小原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信