Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms

IF 0.2 Q4 MATHEMATICS
 Hui Shyamal K., Lemence Richard S., Mandal Pradip
{"title":"Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms","authors":" Hui Shyamal K., Lemence Richard S., Mandal Pradip","doi":"10.14712/1213-7243.2020.006","DOIUrl":null,"url":null,"abstract":". A submanifold M m of a generalized Sasakian-space-form M 2 n +1 ( f 1 , f 2 ,f 3 ) is said to be C -totally real submanifold if ξ ∈ Γ( T ⊥ M ) and ϕX ∈ Γ( T ⊥ M ) for all X ∈ Γ( TM ). In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten–van Kampen connection and Tanaka–Webster connection.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2020.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

. A submanifold M m of a generalized Sasakian-space-form M 2 n +1 ( f 1 , f 2 ,f 3 ) is said to be C -totally real submanifold if ξ ∈ Γ( T ⊥ M ) and ϕX ∈ Γ( T ⊥ M ) for all X ∈ Γ( TM ). In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten–van Kampen connection and Tanaka–Webster connection.
广义Sasakian空间形式的Legendarian子流形上的Wintgen不等式
.广义Sasakian空间形式M2n+1(f1,f2,f3)的一个子流形Mm称为C-全实子流形,如果ξ∈Γ。特别地,如果m=n,则Mn称为勒让德子流形。在这里,我们导出了关于不同连接的广义Sasakian空间形式的Legendarian子流形上的Wintgen不等式;即四分之一对称度量连接、Schouten–van Kampen连接和Tanaka–Webster连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信