Integer complexity: the integer defect

Q4 Mathematics
Harry Altman
{"title":"Integer complexity: the integer defect","authors":"Harry Altman","doi":"10.2140/moscow.2019.8.193","DOIUrl":null,"url":null,"abstract":"Define $\\|n\\|$ to be the complexity of $n$, the smallest number of ones needed to write $n$ using an arbitrary combination of addition and multiplication. John Selfridge showed that $\\|n\\|\\ge 3\\log_3 n$ for all $n$, leading this author and Zelinsky to define the defect of $n$, $\\delta(n)$, to be the difference $\\|n\\|-3\\log_3 n$. Meanwhile, in the study of addition chains, it is common to consider $s(n)$, the number of small steps of $n$, defined as $\\ell(n)-\\lfloor\\log_2 n\\rfloor$, an integer quantity. So here we analogously define $D(n)$, the integer defect of $n$, an integer version of $\\delta(n)$ analogous to $s(n)$. Note that $D(n)$ is not the same as $\\lceil \\delta(n) \\rceil$. \nWe show that $D(n)$ has additional meaning in terms of the defect well-ordering considered in [3], in that $D(n)$ indicates which powers of $\\omega$ the quantity $\\delta(n)$ lies between when one restricts to $n$ with $\\|n\\|$ lying in a specified congruence class modulo $3$. We also determine all numbers $n$ with $D(n)\\le 1$, and use this to generalize a result of Rawsthorne [18].","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.193","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Define $\|n\|$ to be the complexity of $n$, the smallest number of ones needed to write $n$ using an arbitrary combination of addition and multiplication. John Selfridge showed that $\|n\|\ge 3\log_3 n$ for all $n$, leading this author and Zelinsky to define the defect of $n$, $\delta(n)$, to be the difference $\|n\|-3\log_3 n$. Meanwhile, in the study of addition chains, it is common to consider $s(n)$, the number of small steps of $n$, defined as $\ell(n)-\lfloor\log_2 n\rfloor$, an integer quantity. So here we analogously define $D(n)$, the integer defect of $n$, an integer version of $\delta(n)$ analogous to $s(n)$. Note that $D(n)$ is not the same as $\lceil \delta(n) \rceil$. We show that $D(n)$ has additional meaning in terms of the defect well-ordering considered in [3], in that $D(n)$ indicates which powers of $\omega$ the quantity $\delta(n)$ lies between when one restricts to $n$ with $\|n\|$ lying in a specified congruence class modulo $3$. We also determine all numbers $n$ with $D(n)\le 1$, and use this to generalize a result of Rawsthorne [18].
整数复杂性:整数缺陷
将$n\|$定义为$n$的复杂度,这是使用加法和乘法的任意组合写入$n$所需的最小个数。John Selfridge证明了$n\\ge 3\log_3n$对于所有$n$,导致作者和Zelinsky将$n$的缺陷$\delta(n)$定义为差值$n\\-\log_3n$。同时,在加成链的研究中,通常考虑$s(n)$,$n$的小步数,定义为$\ell(n)-\lfloor\log_2n\rfloor$,一个整数。因此,在这里我们类似地定义$D(n)$,$n$的整数缺陷,类似于$s(n)$$\delta(n)的整数版本。请注意,$D(n)$与$\lceil\delta(n)\ rceil$不同。我们证明了$D(n)$在[3]中考虑的缺陷阱排序方面具有额外的意义,因为$D(n)$指示当限制为$n$时,量$\deta(n)$$\omega$的幂之间,$\n\|$位于指定的同余类模$3$中。我们还确定了所有数字$n$与$D(n)\le 1$,并用它来推广Rawsthorne[18]的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信