On the existence of posterior mean for Bayesian logistic regression

IF 0.8 Q3 STATISTICS & PROBABILITY
Huong T. T. Pham, Hoa Pham
{"title":"On the existence of posterior mean for Bayesian logistic regression","authors":"Huong T. T. Pham, Hoa Pham","doi":"10.1515/mcma-2021-2089","DOIUrl":null,"url":null,"abstract":"Abstract Existence conditions for posterior mean of Bayesian logistic regression depend on both chosen prior distributions and a likelihood function. In logistic regression, different patterns of data points can lead to finite maximum likelihood estimates (MLE) or infinite MLE of the regression coefficients. Albert and Anderson [On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71 1984, 1, 1–10] gave definitions of different types of data points, which are complete separation, quasicomplete separation and overlap. Conditions for the existence of the MLE for logistic regression models were proposed under different types of data points. Based on these conditions, we propose the necessary and sufficient conditions for the existence of posterior mean under different choices of prior distributions. In this paper, a general wide class of priors, which are informative priors and non-informative priors having proper distributions and improper distributions, are considered for the existence of posterior mean. In addition, necessary and sufficient conditions for the existence of posterior mean for an individual coefficient is also proposed.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"277 - 288"},"PeriodicalIF":0.8000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Existence conditions for posterior mean of Bayesian logistic regression depend on both chosen prior distributions and a likelihood function. In logistic regression, different patterns of data points can lead to finite maximum likelihood estimates (MLE) or infinite MLE of the regression coefficients. Albert and Anderson [On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71 1984, 1, 1–10] gave definitions of different types of data points, which are complete separation, quasicomplete separation and overlap. Conditions for the existence of the MLE for logistic regression models were proposed under different types of data points. Based on these conditions, we propose the necessary and sufficient conditions for the existence of posterior mean under different choices of prior distributions. In this paper, a general wide class of priors, which are informative priors and non-informative priors having proper distributions and improper distributions, are considered for the existence of posterior mean. In addition, necessary and sufficient conditions for the existence of posterior mean for an individual coefficient is also proposed.
关于贝叶斯逻辑回归的后验均值的存在性
摘要贝叶斯逻辑回归后验均值的存在条件取决于所选择的先验分布和似然函数。在逻辑回归中,不同模式的数据点可能导致回归系数的有限最大似然估计(MLE)或无限MLE。Albert和Anderson[关于逻辑回归模型中最大似然估计的存在,Biometrika 71 1984,1,1–10]给出了不同类型数据点的定义,这些数据点是完全分离、准完全分离和重叠。在不同类型的数据点下,提出了逻辑回归模型MLE存在的条件。基于这些条件,我们提出了在不同先验分布选择下后验均值存在的充要条件。对于后验均值的存在,本文考虑了一类广义先验,即具有适当分布和不适当分布的信息先验和非信息先验。此外,还提出了个体系数存在后验均值的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信