Shashini D. Diwakara, G. McCandless, Sampath B. Alahakoon, Ronald A. Smaldone
{"title":"Synthesis of Side-Chain-Free Hydrazone-Linked Covalent Organic Frameworks through Supercritical Carbon Dioxide Activation","authors":"Shashini D. Diwakara, G. McCandless, Sampath B. Alahakoon, Ronald A. Smaldone","doi":"10.1055/a-1477-5123","DOIUrl":null,"url":null,"abstract":"Abstract Supercritical carbon dioxide (scCO2) activation provides milder conditions to process covalent organic frameworks (COFs) without compromising their crystallinity and porosity. To this end, three hydrazone COFs (TFPB-DHz COF, TFPT-DHz COF, Py-DHz COF) were synthesized with a terephthaloyl dihydrazide linker (DHz) which has no substituents. To date, the synthesis of hydrazone COFs without a narrow range of alkoxy linkers has not been possible. The scCO2-activated hydrazone-linked COFs in this study were crystalline and had high surface areas (surface areas of TFPB-DHz COF, TFPT-DHz COF, and Py-DHz COF were 790, 1199, and 932 m2/g, respectively). This study shows the significance of using milder activation methods for making hydrazone-linked COF structures that were previously inaccessible.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"03 1","pages":"277 - 282"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/a-1477-5123","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-1477-5123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Supercritical carbon dioxide (scCO2) activation provides milder conditions to process covalent organic frameworks (COFs) without compromising their crystallinity and porosity. To this end, three hydrazone COFs (TFPB-DHz COF, TFPT-DHz COF, Py-DHz COF) were synthesized with a terephthaloyl dihydrazide linker (DHz) which has no substituents. To date, the synthesis of hydrazone COFs without a narrow range of alkoxy linkers has not been possible. The scCO2-activated hydrazone-linked COFs in this study were crystalline and had high surface areas (surface areas of TFPB-DHz COF, TFPT-DHz COF, and Py-DHz COF were 790, 1199, and 932 m2/g, respectively). This study shows the significance of using milder activation methods for making hydrazone-linked COF structures that were previously inaccessible.