{"title":"Evolutionary-learning framework: improving automatic swarm robotics design","authors":"F. Mukhlish, J. Page, Michael Bain","doi":"10.1108/IJIUS-06-2018-0016","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to review the current state of proceedings in the research area of automatic swarm design and discusses possible solutions to advance swarm robotics research.Design/methodology/approachFirst, this paper begins by reviewing the current state of proceedings in the field of automatic swarm design to provide a basic understanding of the field. This should lead to the identification of which issues need to be resolved in order to move forward swarm robotics research. Then, some possible solutions to the challenges are discussed to identify future directions and how the proposed idea of incorporating learning mechanism could benefit swarm robotics design. Lastly, a novel evolutionary-learning framework for swarms based on epigenetic function is proposed with a discussion of its merits and suggestions for future research directions.FindingsThe discussion shows that main challenge which is needed to be resolved is the presence of dynamic environment which is mainly caused by agent-to-agent and agent-to-environment interactions. A possible solution to tackle the challenge is by incorporating learning capability to the swarm to tackle dynamic environment.Originality/valueThis paper gives a new perspective on how to improve automatic swarm design in order to move forward swarm robotics research. Along with the discussion, this paper also proposes a novel framework to incorporate learning mechanism into evolutionary swarm using epigenetic function.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/IJIUS-06-2018-0016","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/IJIUS-06-2018-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 8
Abstract
PurposeThe purpose of this paper is to review the current state of proceedings in the research area of automatic swarm design and discusses possible solutions to advance swarm robotics research.Design/methodology/approachFirst, this paper begins by reviewing the current state of proceedings in the field of automatic swarm design to provide a basic understanding of the field. This should lead to the identification of which issues need to be resolved in order to move forward swarm robotics research. Then, some possible solutions to the challenges are discussed to identify future directions and how the proposed idea of incorporating learning mechanism could benefit swarm robotics design. Lastly, a novel evolutionary-learning framework for swarms based on epigenetic function is proposed with a discussion of its merits and suggestions for future research directions.FindingsThe discussion shows that main challenge which is needed to be resolved is the presence of dynamic environment which is mainly caused by agent-to-agent and agent-to-environment interactions. A possible solution to tackle the challenge is by incorporating learning capability to the swarm to tackle dynamic environment.Originality/valueThis paper gives a new perspective on how to improve automatic swarm design in order to move forward swarm robotics research. Along with the discussion, this paper also proposes a novel framework to incorporate learning mechanism into evolutionary swarm using epigenetic function.