Cones generated by a generalized fractional maximal function

IF 0.7 Q2 MATHEMATICS
N. Bokayev, A. Gogatishvili, А.N. Abek
{"title":"Cones generated by a generalized fractional maximal function","authors":"N. Bokayev, A. Gogatishvili, А.N. Abek","doi":"10.31489/2023m2/53-62","DOIUrl":null,"url":null,"abstract":"The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-maximal function in a rearrangement invariant space is investigated. This question reduces to the embedding of the considered cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by a generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rearrangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtigareeva, G. Karshygina and others.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/53-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-maximal function in a rearrangement invariant space is investigated. This question reduces to the embedding of the considered cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by a generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rearrangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtigareeva, G. Karshygina and others.
广义分式极大函数生成的Cones
本文考虑了在重排不变空间的基础上构造的广义分式极大函数的空间。构造了两类由广义分式极大函数的无增量重排生成的锥,它们配备了正齐次泛函。研究了广义分式极大函数空间在重排不变空间中的嵌入问题。这个问题归结为所考虑的锥在相应的重排不变空间中的嵌入。此外,还给出了用广义Riesz势生成的锥覆盖广义分式极大函数生成的锥的条件。M.Goldman、E.Bakhtigareeva、G.Karshygina等人的著作中曾考虑过广义势非递增重排的Cones。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信