On $p$-adic entropy of some solenoid dynamical systems

IF 0.4 4区 数学 Q4 MATHEMATICS
Yuji Katagiri
{"title":"On $p$-adic entropy of some solenoid dynamical systems","authors":"Yuji Katagiri","doi":"10.2996/kmj44207","DOIUrl":null,"url":null,"abstract":"To a dynamical system is attached a non-negative real number called entropy. In 1990, Lind, Schmidt and Ward proved that the entropy for the dynamical system induced by the Laurent polynomial algebra over the ring of the rational integers is described by the Mahler measure. In 2009, Deninger introduced the $p$-adic entropy and obtained a $p$-adic analogue of Lind-Schmidt-Ward's theorem by using the $p$-adic Mahler measures. In this paper, we prove the existence and the explicit formula about $p$-adic entropies for two dynamical systems; one is induced by the Laurent polynomial algebra over the ring of the integers of a number field $K$, and the other is defined by the solenoid.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj44207","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

To a dynamical system is attached a non-negative real number called entropy. In 1990, Lind, Schmidt and Ward proved that the entropy for the dynamical system induced by the Laurent polynomial algebra over the ring of the rational integers is described by the Mahler measure. In 2009, Deninger introduced the $p$-adic entropy and obtained a $p$-adic analogue of Lind-Schmidt-Ward's theorem by using the $p$-adic Mahler measures. In this paper, we prove the existence and the explicit formula about $p$-adic entropies for two dynamical systems; one is induced by the Laurent polynomial algebra over the ring of the integers of a number field $K$, and the other is defined by the solenoid.
关于一类螺线管动力系统的$p$adic熵
对动力系统附加一个非负实数,称为熵。1990年,Lind, Schmidt和Ward证明了在有理整数环上由Laurent多项式代数诱导的动力系统的熵可以用Mahler测度来描述。2009年,Deninger引入了$p$-adic熵,并利用$p$-adic Mahler测度得到了Lind-Schmidt-Ward定理的$p$-adic类比。本文证明了两个动力系统$p$-进熵的存在性,并给出了$p$-进熵的显式公式;一个是由数字域K的整数环上的洛朗多项式代数推导出来的,另一个是由螺线管定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信