Incompressible limit for compressible viscoelastic flows with large velocity

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianpeng Hu, Yaobin Ou, Dehua Wang, Lu Yang
{"title":"Incompressible limit for compressible viscoelastic flows with large velocity","authors":"Xianpeng Hu, Yaobin Ou, Dehua Wang, Lu Yang","doi":"10.1515/anona-2022-0324","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with the incompressible limit of global-in-time strong solutions with arbitrary large initial velocity for the three-dimensional compressible viscoelastic equations. The incompressibility is achieved by the large value of the volume viscosity, which is different from the low Mach number limit. To obtain the uniform estimates, we establish the estimates for the potential part and the divergence-free part of the velocity. As the volume viscosity goes to infinity, the dispersion associated with the pressure waves tends to disappear, but the large volume viscosity provides a strong dissipation on the potential part of the velocity forcing the flow to be almost incompressible.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0324","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We are concerned with the incompressible limit of global-in-time strong solutions with arbitrary large initial velocity for the three-dimensional compressible viscoelastic equations. The incompressibility is achieved by the large value of the volume viscosity, which is different from the low Mach number limit. To obtain the uniform estimates, we establish the estimates for the potential part and the divergence-free part of the velocity. As the volume viscosity goes to infinity, the dispersion associated with the pressure waves tends to disappear, but the large volume viscosity provides a strong dissipation on the potential part of the velocity forcing the flow to be almost incompressible.
大速度可压缩粘弹性流的不可压缩极限
摘要我们研究了三维可压缩粘弹性方程具有任意大初速度的全局时间强解的不可压缩极限。不可压缩性是通过体积粘度的大值来实现的,这与低马赫数极限不同。为了获得一致的估计,我们建立了速度的势部分和无发散部分的估计。当体积粘度达到无穷大时,与压力波相关的色散往往会消失,但大的体积粘度在速度的潜在部分提供了强大的耗散,迫使流动几乎不可压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信