XMA2: A crossbar-aware multi-task adaption framework via 2-tier masks

IF 1.9 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Fan Zhang, Li Yang, Jian Meng, J.-s. Seo, Yu Cao, Deliang Fan
{"title":"XMA2: A crossbar-aware multi-task adaption framework via 2-tier masks","authors":"Fan Zhang, Li Yang, Jian Meng, J.-s. Seo, Yu Cao, Deliang Fan","doi":"10.3389/felec.2022.1032485","DOIUrl":null,"url":null,"abstract":"Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has been widely investigated. However, most prior works focus on single-task inference due to the high energy consumption of weight reprogramming and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based DNN accelerator for multiple tasks has not been fully explored. In this study, we propose XMA 2, a novel crossbar-aware learning method with a 2-tier masking technique to efficiently adapt a DNN backbone model deployed in the ReRAM crossbar for new task learning. During the XMA2-based multi-task adaption (MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask is first learned to identify the most critical PEs to be reprogrammed for essential new features of the new task. Subsequently, the tier-2 crossbar column-wise mask is applied within the rest of the weight-frozen PEs to learn a hardware-friendly and column-wise scaling factor for new task learning without modifying the weight values. With such crossbar-aware design innovations, we could implement the required masking operation in an existing crossbar-based convolution engine with minimal hardware/memory overhead to adapt to a new task. The extensive experimental results show that compared with other state-of-the-art multiple-task adaption methods, XMA2 achieves the highest accuracy on all popular multi-task learning datasets.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2022.1032485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has been widely investigated. However, most prior works focus on single-task inference due to the high energy consumption of weight reprogramming and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based DNN accelerator for multiple tasks has not been fully explored. In this study, we propose XMA 2, a novel crossbar-aware learning method with a 2-tier masking technique to efficiently adapt a DNN backbone model deployed in the ReRAM crossbar for new task learning. During the XMA2-based multi-task adaption (MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask is first learned to identify the most critical PEs to be reprogrammed for essential new features of the new task. Subsequently, the tier-2 crossbar column-wise mask is applied within the rest of the weight-frozen PEs to learn a hardware-friendly and column-wise scaling factor for new task learning without modifying the weight values. With such crossbar-aware design innovations, we could implement the required masking operation in an existing crossbar-based convolution engine with minimal hardware/memory overhead to adapt to a new task. The extensive experimental results show that compared with other state-of-the-art multiple-task adaption methods, XMA2 achieves the highest accuracy on all popular multi-task learning datasets.
XMA2:一个通过两层掩码实现交叉点感知的多任务自适应框架
近年来,基于ReRAM交叉棒的深度神经网络(DNN)加速器得到了广泛的研究。然而,由于权重重编程的高能量消耗和ReRAM细胞的低耐力问题,大多数先前的研究都集中在单任务推理上。将基于ReRAM交叉棒的深度神经网络加速器用于多任务还没有得到充分的探索。在这项研究中,我们提出了一种新的交叉棒感知学习方法XMA 2,该方法采用了两层掩蔽技术,以有效地适应部署在ReRAM交叉棒中的DNN骨干模型进行新任务学习。在基于xma2的多任务适应(MTA)过程中,首先学习第1层ReRAM基于交叉条的处理元素(PE)智能掩码,以识别最关键的PE,以便为新任务的基本新功能重新编程。随后,在剩余的权重冻结pe中应用第2层交叉栏列式掩码,在不修改权重值的情况下,为新任务学习学习硬件友好的列式缩放因子。有了这种交叉棒感知的设计创新,我们可以在现有的基于交叉棒的卷积引擎中以最小的硬件/内存开销实现所需的屏蔽操作,以适应新任务。大量的实验结果表明,与其他最先进的多任务自适应方法相比,XMA2在所有流行的多任务学习数据集上都达到了最高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信