{"title":"Character varieties of a transitioning Coxeter 4-orbifold","authors":"Stefano Riolo, Andrea Seppi","doi":"10.4171/GGD/653","DOIUrl":null,"url":null,"abstract":"In 2010, Kerckhoff and Storm discovered a path of hyperbolic 4-polytopes eventually collapsing to an ideal right-angled cuboctahedron. This is expressed by a deformation of the inclusion of a discrete reflection group (a right-angled Coxeter group) in the isometry group of hyperbolic 4-space. More recently, we have shown that the path of polytopes can be extended to Anti-de Sitter geometry so as to have geometric transition on a naturally associated 4-orbifold, via a transitional half-pipe structure. In this paper, we study the hyperbolic, Anti-de Sitter, and half-pipe character varieties of Kerckhoff and Storm's right-angled Coxeter group near each of the found holonomy representations, including a description of the singularity that appears at the collapse. An essential tool is the study of some rigidity properties of right-angled cusp groups in dimension four.","PeriodicalId":55084,"journal":{"name":"Groups Geometry and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Geometry and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/GGD/653","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
In 2010, Kerckhoff and Storm discovered a path of hyperbolic 4-polytopes eventually collapsing to an ideal right-angled cuboctahedron. This is expressed by a deformation of the inclusion of a discrete reflection group (a right-angled Coxeter group) in the isometry group of hyperbolic 4-space. More recently, we have shown that the path of polytopes can be extended to Anti-de Sitter geometry so as to have geometric transition on a naturally associated 4-orbifold, via a transitional half-pipe structure. In this paper, we study the hyperbolic, Anti-de Sitter, and half-pipe character varieties of Kerckhoff and Storm's right-angled Coxeter group near each of the found holonomy representations, including a description of the singularity that appears at the collapse. An essential tool is the study of some rigidity properties of right-angled cusp groups in dimension four.
期刊介绍:
Groups, Geometry, and Dynamics is devoted to publication of research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. The journal covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields.
Topics covered include:
geometric group theory;
asymptotic group theory;
combinatorial group theory;
probabilities on groups;
computational aspects and complexity;
harmonic and functional analysis on groups, free probability;
ergodic theory of group actions;
cohomology of groups and exotic cohomologies;
groups and low-dimensional topology;
group actions on trees, buildings, rooted trees.