{"title":"Innovative, Modular Building Facades - as a Tool to Counteract The Effects of and to Prevent Climate Change","authors":"Patrycja Kamińska, Hanna Michalak","doi":"10.2478/ceer-2022-0052","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents original research, encompassing the results of analyses of modular building façade solutions, as well as innovative design concepts based on these results by students of the Faculty of Architecture at the Poznań University of Technology. Adapting architecture to climate change is the main objective behind research and innovative designs. Reduction of carbon dioxide emissions, thermal comfort of buildings, better thermal environment ergonomics for users of buildings’ interiors, increased energy efficiency together with the use of renewable energy sources are major challenges for today’s designers. Dealing with rainwater, wind and pressure changes are already absolute necessities. Contemporary trends in modern construction in urban areas were identified on the basis of results of analyses of selected existing buildings, presented using tables, graphs and statistical tools. Conclusions from the demonstrated correlations of quantitative data with social, economic and environmental factors became the basis for the students’ conceptual assumptions. The selected innovative façade designs presented in the article demonstrate a variety of solutions for modern modular systems which protect buildings from excessive sun exposure, help insulation resist external factors, generate energy, ventilate buildings, use pressure differences, collect water, purify air, protect fauna, etc. As a result, the developed concepts may be indicative of a contemporary approach to sustainable building design, based not only on reducing any negative environmental impact and conserving natural resources, but also on designing aesthetic buildings based on classic notions of beauty.","PeriodicalId":54121,"journal":{"name":"Civil and Environmental Engineering Reports","volume":"32 1","pages":"184 - 209"},"PeriodicalIF":0.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ceer-2022-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The paper presents original research, encompassing the results of analyses of modular building façade solutions, as well as innovative design concepts based on these results by students of the Faculty of Architecture at the Poznań University of Technology. Adapting architecture to climate change is the main objective behind research and innovative designs. Reduction of carbon dioxide emissions, thermal comfort of buildings, better thermal environment ergonomics for users of buildings’ interiors, increased energy efficiency together with the use of renewable energy sources are major challenges for today’s designers. Dealing with rainwater, wind and pressure changes are already absolute necessities. Contemporary trends in modern construction in urban areas were identified on the basis of results of analyses of selected existing buildings, presented using tables, graphs and statistical tools. Conclusions from the demonstrated correlations of quantitative data with social, economic and environmental factors became the basis for the students’ conceptual assumptions. The selected innovative façade designs presented in the article demonstrate a variety of solutions for modern modular systems which protect buildings from excessive sun exposure, help insulation resist external factors, generate energy, ventilate buildings, use pressure differences, collect water, purify air, protect fauna, etc. As a result, the developed concepts may be indicative of a contemporary approach to sustainable building design, based not only on reducing any negative environmental impact and conserving natural resources, but also on designing aesthetic buildings based on classic notions of beauty.