{"title":"Artificial intelligence in supply chain decision-making: an environmental, social, and governance triggering and technological inhibiting protocol","authors":"Xinyue Hao, E. Demir","doi":"10.1108/jm2-01-2023-0009","DOIUrl":null,"url":null,"abstract":"\nPurpose\nDecision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this subject, the purpose of this study is to explore the triggers and technological inhibitors affecting the adoption of AI. This study also aims to identify three-dimensional triggers, notably those linked to environmental, social, and governance (ESG), as well as technological inhibitors.\n\n\nDesign/methodology/approach\nDrawing upon a six-step systematic review following the preferred reporting items for systematic reviews and meta analysis (PRISMA) guidelines, a broad range of journal publications was recognized, with a thematic analysis under the lens of the ESG framework, offering a unique perspective on factors triggering and inhibiting AI adoption in the supply chain.\n\n\nFindings\nIn the environmental dimension, triggers include product waste reduction and greenhouse gas emissions reduction, highlighting the potential of AI in promoting sustainability and environmental responsibility. In the social dimension, triggers encompass product security and quality, as well as social well-being, indicating how AI can contribute to ensuring safe and high-quality products and enhancing societal welfare. In the governance dimension, triggers involve agile and lean practices, cost reduction, sustainable supplier selection, circular economy initiatives, supply chain risk management, knowledge sharing and the synergy between supply and demand. The inhibitors in the technological category present challenges, encompassing the lack of regulations and rules, data security and privacy concerns, responsible and ethical AI considerations, performance and ethical assessment difficulties, poor data quality, group bias and the need to achieve synergy between AI and human decision-makers.\n\n\nResearch limitations/implications\nDespite the use of PRISMA guidelines to ensure a comprehensive search and screening process, it is possible that some relevant studies in other databases and industry reports may have been missed. In light of this, the selected studies may not have fully captured the diversity of triggers and technological inhibitors. The extraction of themes from the selected papers is subjective in nature and relies on the interpretation of researchers, which may introduce bias.\n\n\nOriginality/value\nThe research contributes to the field by conducting a comprehensive analysis of the diverse factors that trigger or inhibit AI adoption, providing valuable insights into their impact. By incorporating the ESG protocol, the study offers a holistic evaluation of the dimensions associated with AI adoption in the supply chain, presenting valuable implications for both industry professionals and researchers. The originality lies in its in-depth examination of the multifaceted aspects of AI adoption, making it a valuable resource for advancing knowledge in this area.\n","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-01-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Decision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this subject, the purpose of this study is to explore the triggers and technological inhibitors affecting the adoption of AI. This study also aims to identify three-dimensional triggers, notably those linked to environmental, social, and governance (ESG), as well as technological inhibitors.
Design/methodology/approach
Drawing upon a six-step systematic review following the preferred reporting items for systematic reviews and meta analysis (PRISMA) guidelines, a broad range of journal publications was recognized, with a thematic analysis under the lens of the ESG framework, offering a unique perspective on factors triggering and inhibiting AI adoption in the supply chain.
Findings
In the environmental dimension, triggers include product waste reduction and greenhouse gas emissions reduction, highlighting the potential of AI in promoting sustainability and environmental responsibility. In the social dimension, triggers encompass product security and quality, as well as social well-being, indicating how AI can contribute to ensuring safe and high-quality products and enhancing societal welfare. In the governance dimension, triggers involve agile and lean practices, cost reduction, sustainable supplier selection, circular economy initiatives, supply chain risk management, knowledge sharing and the synergy between supply and demand. The inhibitors in the technological category present challenges, encompassing the lack of regulations and rules, data security and privacy concerns, responsible and ethical AI considerations, performance and ethical assessment difficulties, poor data quality, group bias and the need to achieve synergy between AI and human decision-makers.
Research limitations/implications
Despite the use of PRISMA guidelines to ensure a comprehensive search and screening process, it is possible that some relevant studies in other databases and industry reports may have been missed. In light of this, the selected studies may not have fully captured the diversity of triggers and technological inhibitors. The extraction of themes from the selected papers is subjective in nature and relies on the interpretation of researchers, which may introduce bias.
Originality/value
The research contributes to the field by conducting a comprehensive analysis of the diverse factors that trigger or inhibit AI adoption, providing valuable insights into their impact. By incorporating the ESG protocol, the study offers a holistic evaluation of the dimensions associated with AI adoption in the supply chain, presenting valuable implications for both industry professionals and researchers. The originality lies in its in-depth examination of the multifaceted aspects of AI adoption, making it a valuable resource for advancing knowledge in this area.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.