A new algorithm for matching Chinese NBS firm-level with customs data

IF 3.7 Q1 ECONOMICS
P. Egger, Susie Xi Rao, S. Papini
{"title":"A new algorithm for matching Chinese NBS firm-level with customs data","authors":"P. Egger, Susie Xi Rao, S. Papini","doi":"10.1080/17538963.2021.1963046","DOIUrl":null,"url":null,"abstract":"ABSTRACT Combining accounting-type firm data and transactions-type customs data has become increasingly important for research in international and industrial economics. The statistical authorities in several countries such as the United States or France provide such linked data without details on sources, and researchers have to assume that the matching is correct and the firm identifiers are unique and flawless in the source data. For some other countries such as Switzerland or China, firm and customs data contain information which permits such linking ex post using string matching based on firm names and their meta-information like addresses. Due to spelling and typos, such matching is prone to some errors. Obtaining the largest-possible number of high-quality matches helps avoid potential biases while keeping crucial details. We report on a new algorithm which improves considerably the hitherto available linking efforts of the National Bureau of Statistics firm-level and the Customs trade data for China.","PeriodicalId":45279,"journal":{"name":"China Economic Journal","volume":"14 1","pages":"311 - 335"},"PeriodicalIF":3.7000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Economic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17538963.2021.1963046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Combining accounting-type firm data and transactions-type customs data has become increasingly important for research in international and industrial economics. The statistical authorities in several countries such as the United States or France provide such linked data without details on sources, and researchers have to assume that the matching is correct and the firm identifiers are unique and flawless in the source data. For some other countries such as Switzerland or China, firm and customs data contain information which permits such linking ex post using string matching based on firm names and their meta-information like addresses. Due to spelling and typos, such matching is prone to some errors. Obtaining the largest-possible number of high-quality matches helps avoid potential biases while keeping crucial details. We report on a new algorithm which improves considerably the hitherto available linking efforts of the National Bureau of Statistics firm-level and the Customs trade data for China.
中国国家统计局企业层面与海关数据匹配的新算法
将会计类型的公司数据与交易类型的海关数据相结合,在国际经济和产业经济研究中变得越来越重要。美国或法国等几个国家的统计当局提供这样的关联数据,但没有详细说明来源,研究人员必须假设匹配是正确的,并且源数据中的公司标识符是唯一的和完美的。对于其他一些国家,如瑞士或中国,公司和海关数据包含的信息允许使用基于公司名称及其元信息(如地址)的字符串匹配进行事后链接。由于拼写和拼写错误,这种匹配容易出现一些错误。获得尽可能多的高质量匹配有助于避免潜在的偏差,同时保留关键细节。我们报告了一种新的算法,该算法大大改进了迄今为止国家统计局企业层面与中国海关贸易数据的联系工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信