A generalization of Gorenstein injective modules

IF 0.7 Q2 MATHEMATICS
F. M. A. Mashhad
{"title":"A generalization of Gorenstein injective modules","authors":"F. M. A. Mashhad","doi":"10.32513/tmj/19322008156","DOIUrl":null,"url":null,"abstract":"Let R be an associative ring with identity and M be a left R-module. In this paper, we introduce M-Gorenstein injective modules as a generalization of Gorenstein injective modules. We verify some properties of M-Gorenstein injective modules analogous to those holding for Gorenstein injective modules. There is an interesting theorem in classical homological algebra which asserts that R is a Noetherian ring if and only if the class of injective modules over R is closed under arbitrary direct sum. Our goal in this paper is to investigate the M-Gorenstein injective counterpart of this fact. If the class of M-Gorenstein injective modules over R is closed under arbitrary direct sum, then R will be a Noetherian ring. Also, it has been proved that in the special case M=R, when R is a commutative Noetherian ring with a dualizing complex, then the class of R-Gorenstein injective modules is closed under arbitrary direct sum. In the main theorem of this paper, we prove the general case of this result. More precisely, we show that for any left R-module M over a Noetherian ring R in which every R-module has finite M-Gorenstein injective dimension, the class of M-Gorenstein injective modules is closed under arbitrary direct sum.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be an associative ring with identity and M be a left R-module. In this paper, we introduce M-Gorenstein injective modules as a generalization of Gorenstein injective modules. We verify some properties of M-Gorenstein injective modules analogous to those holding for Gorenstein injective modules. There is an interesting theorem in classical homological algebra which asserts that R is a Noetherian ring if and only if the class of injective modules over R is closed under arbitrary direct sum. Our goal in this paper is to investigate the M-Gorenstein injective counterpart of this fact. If the class of M-Gorenstein injective modules over R is closed under arbitrary direct sum, then R will be a Noetherian ring. Also, it has been proved that in the special case M=R, when R is a commutative Noetherian ring with a dualizing complex, then the class of R-Gorenstein injective modules is closed under arbitrary direct sum. In the main theorem of this paper, we prove the general case of this result. More precisely, we show that for any left R-module M over a Noetherian ring R in which every R-module has finite M-Gorenstein injective dimension, the class of M-Gorenstein injective modules is closed under arbitrary direct sum.
Gorenstein内射模的推广
设R是具有恒等式的结合环,M是左R模。在本文中,我们引入M-戈伦斯坦内射模作为戈伦斯坦内射模的推广。我们验证了M-戈伦斯坦内射模的一些性质,类似于戈伦斯坦内射模的性质。经典同调代数中有一个有趣的定理,它断言R是诺瑟环,当且仅当R上的内射模类在任意直和下是闭的。我们在本文中的目标是研究这一事实的M-戈伦斯坦内射对应物。如果R上的M-Gorenstein内射模类在任意直和下是闭的,则R将是诺瑟环。此外,还证明了在M=R的特殊情况下,当R是具有对偶复数的交换Noetherian环时,R-Gorenstein内射模类在任意直和下是闭的。在本文的主要定理中,我们证明了这个结果的一般情况。更确切地说,我们证明了对于诺瑟环R上的任何左R-模M,其中每个R-模都有有限的M-Gorenstein内射维数,M-Gorensstein内射模类在任意直和下是闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信