Bifurcations in spatially distributed chains of two-dimensional systems of equations

IF 1.4 4区 数学 Q1 MATHEMATICS
S. Kaschenko
{"title":"Bifurcations in spatially distributed chains of two-dimensional systems of equations","authors":"S. Kaschenko","doi":"10.1070/RM9986","DOIUrl":null,"url":null,"abstract":"u̇j = Auj + F (uj) + D[uj+1− 2uj + uj−1], j = 1, . . . , N ; u0 ≡ uN , uN+1 ≡ u1. (2) We associate the element uj(t) with the value of a function u(t, xj) of two variables, where xj = 2πjN−1 is the angular coordinate. The main assumption is that the number N of elements in (2) is sufficiently large, so that the parameter ε = 2πN−1 is sufficiently small: 0 < ε ≪ 1. This gives reason to switch from the discrete system (2) to the following system, which is continuous with respect to the spatial variable x:","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"75 1","pages":"1153 - 1155"},"PeriodicalIF":1.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9986","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

u̇j = Auj + F (uj) + D[uj+1− 2uj + uj−1], j = 1, . . . , N ; u0 ≡ uN , uN+1 ≡ u1. (2) We associate the element uj(t) with the value of a function u(t, xj) of two variables, where xj = 2πjN−1 is the angular coordinate. The main assumption is that the number N of elements in (2) is sufficiently large, so that the parameter ε = 2πN−1 is sufficiently small: 0 < ε ≪ 1. This gives reason to switch from the discrete system (2) to the following system, which is continuous with respect to the spatial variable x:
二维方程组空间分布链中的分岔
u̇j=Auj+F(uj)+D[uj+1−2uj+uj−1],j=1,Nu0选择uN,uN+1选择u1。(2) 我们将元素uj(t)与两个变量的函数u(t,xj)的值相关联,其中xj=2πjN−1是角坐标。主要假设(2)中元素的数量N足够大,因此参数ε=2πN−1足够小:0<ε≪1。这给出了从离散系统(2)切换到以下系统的理由,该系统相对于空间变量x是连续的:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信