New characterizations of the helicoid in a cylinder

IF 0.4 4区 数学 Q4 MATHEMATICS
Eunjoo Lee
{"title":"New characterizations of the helicoid in a cylinder","authors":"Eunjoo Lee","doi":"10.2748/tmj.20210713","DOIUrl":null,"url":null,"abstract":"This paper characterizes a compact piece of the helicoid HC in a solid cylinder C ⊂ R from the following two perspectives. First, under reasonable conditions, HC has the smallest area among all immersed surfaces Σ with ∂Σ ⊂ d1 ∪ d2 ∪ S, where d1 and d2 are the diameters of the top and bottom disks of C and S is the side surface of C. Second, other than HC , there exists no minimal surface whose boundary consists of d1, d2, and a pair of rotationally symmetric curves γ1, γ2 on S along which it meets S orthogonally. We draw the same conclusion when the boundary curves on S are a pair of helices of a certain height.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210713","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper characterizes a compact piece of the helicoid HC in a solid cylinder C ⊂ R from the following two perspectives. First, under reasonable conditions, HC has the smallest area among all immersed surfaces Σ with ∂Σ ⊂ d1 ∪ d2 ∪ S, where d1 and d2 are the diameters of the top and bottom disks of C and S is the side surface of C. Second, other than HC , there exists no minimal surface whose boundary consists of d1, d2, and a pair of rotationally symmetric curves γ1, γ2 on S along which it meets S orthogonally. We draw the same conclusion when the boundary curves on S are a pair of helices of a certain height.
圆柱体中螺旋面的新特征
本文从以下两个方面刻画了实心圆柱C⊂R中螺旋HC的紧块。首先,在合理的条件下,HC的面积在所有浸入表面中最小∑,∑∑⊂d1õd2õS,其中d1和d2是C的顶圆盘和底圆盘的直径,S是C的侧面。其次,除了HC之外,不存在边界由d1、d2和一对旋转对称曲线γ1组成的最小表面,γ2,沿其与S正交相交。当S上的边界曲线是一对具有一定高度的螺旋时,我们得出了相同的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信