On $\mathcal{M}$-normal embedded subgroups and the structure of finite groups

Pub Date : 2021-08-31 DOI:10.7146/math.scand.a-126034
Ruifang Chen, Xianhe Zhao, Rui Li
{"title":"On $\\mathcal{M}$-normal embedded subgroups and the structure of finite groups","authors":"Ruifang Chen, Xianhe Zhao, Rui Li","doi":"10.7146/math.scand.a-126034","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group and $H$ be a subgroup of $G$. $H$ is said to be $\\mathcal{M}$-normal supplemented in $G$ if there exists a normal subgroup $K$ of $G$ such that $G=HK$ and $H_1K<G$ for every maximal subgroup $H_1$ of $H$. Furthermore, $H$ is said to be $\\mathcal{M}$-normal embedded in $G$ if there exists a normal subgroup $K$ of $G$ such that $G=HK$ and $H\\cap K=1$ or $H\\cap K$ is $\\mathcal{M}$-normal supplemented in $G$. In this paper, some new criteria for a group to be nilpotent and $p$-supersolvable for some prime $p$ are obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a group and $H$ be a subgroup of $G$. $H$ is said to be $\mathcal{M}$-normal supplemented in $G$ if there exists a normal subgroup $K$ of $G$ such that $G=HK$ and $H_1K
分享
查看原文
$\mathcal{M}$-正规嵌入子群与有限群的结构
设$G$是一个群,$H$是$G$的子群$如果存在$G$的正规子群$K$,使得$G=HK$并且$H$的每个最大子群$H_1$的$H_1K
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信