Identification of monolingual and code-switch information from English-Kannada code-switch data

Q2 Computer Science
Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha
{"title":"Identification of monolingual and code-switch information from English-Kannada code-switch data","authors":"Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha","doi":"10.11591/ijece.v13i5.pp5632-5640","DOIUrl":null,"url":null,"abstract":"Code-switching is a very common occurrence in social media communication, predominantly found in multilingual countries like India. Using more than one language in communication is known as code-switching or code-mixing. Some of the important applications of code-switch are machine translation (MT), shallow parsing, dialog systems, and semantic parsing. Identifying code-switch and monolingual information is useful for better communication in online networking websites. In this paper, we performed a character level n-gram approach to identify monolingual and code-switch information from English-Kannada social media data. We paralleled various machine learning techniques such as naïve Bayes (NB), support vector classifier (SVC), logistic regression (LR) and neural network (NN) on English-Kannada code-switch (EKCS) data. From the proposed approach, it is observed that the character level n-gram approach provides 1.8% to 4.1% of improvement in terms of Accuracy and 1.6% to 3.8% of improvement in F1-score. Also observed that SVC and NN techniques are outperformed in terms of accuracy (97.9%) and F1-score (98%) with character level n-gram.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5632-5640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Code-switching is a very common occurrence in social media communication, predominantly found in multilingual countries like India. Using more than one language in communication is known as code-switching or code-mixing. Some of the important applications of code-switch are machine translation (MT), shallow parsing, dialog systems, and semantic parsing. Identifying code-switch and monolingual information is useful for better communication in online networking websites. In this paper, we performed a character level n-gram approach to identify monolingual and code-switch information from English-Kannada social media data. We paralleled various machine learning techniques such as naïve Bayes (NB), support vector classifier (SVC), logistic regression (LR) and neural network (NN) on English-Kannada code-switch (EKCS) data. From the proposed approach, it is observed that the character level n-gram approach provides 1.8% to 4.1% of improvement in terms of Accuracy and 1.6% to 3.8% of improvement in F1-score. Also observed that SVC and NN techniques are outperformed in terms of accuracy (97.9%) and F1-score (98%) with character level n-gram.
从英语-卡纳达语语码转换数据中识别单语语码转换信息
语码转换在社交媒体交流中非常常见,主要发生在印度等多语言国家。在通信中使用一种以上的语言被称为代码转换或代码混合。代码转换的一些重要应用是机器翻译、浅解析、对话系统和语义解析。识别代码转换和单语信息有助于在线社交网站更好地沟通。在本文中,我们采用字符级n-gram方法从英语-卡纳达语社交媒体数据中识别单语和代码转换信息。我们将各种机器学习技术,如naïve贝叶斯(NB)、支持向量分类器(SVC)、逻辑回归(LR)和神经网络(NN)在英语-卡纳达语代码切换(EKCS)数据上进行了并行处理。从提出的方法中可以观察到,字符级n-gram方法在准确率方面提供了1.8%到4.1%的改进,在f1分数方面提供了1.6%到3.8%的改进。还观察到SVC和NN技术在字符级n-gram的准确率(97.9%)和f1分数(98%)方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信