Digital nets in dimension two with the optimal order of L_p discrepancy

IF 0.3 4区 数学 Q4 MATHEMATICS
Ralph Kritzinger, F. Pillichshammer
{"title":"Digital nets in dimension two with the optimal order of L_p discrepancy","authors":"Ralph Kritzinger, F. Pillichshammer","doi":"10.5802/jtnb.1074","DOIUrl":null,"url":null,"abstract":"We study the $L_p$ discrepancy of two-dimensional digital nets for finite $p$. In the year 2001 Larcher and Pillichshammer identified a class of digital nets for which the symmetrized version in the sense of Davenport has $L_2$ discrepancy of the order $\\sqrt{\\log N}/N$, which is best possible due to the celebrated result of Roth. However, it remained open whether this discrepancy bound also holds for the original digital nets without any modification. \nIn the present paper we identify nets from the above mentioned class for which the symmetrization is not necessary in order to achieve the optimal order of $L_p$ discrepancy for all $p \\in [1,\\infty)$. \nOur findings are in the spirit of a paper by Bilyk from 2013, who considered the $L_2$ discrepancy of lattices consisting of the elements $(k/N,\\{k \\alpha\\})$ for $k=0,1,\\ldots,N-1$, and who gave Diophantine properties of $\\alpha$ which guarantee the optimal order of $L_2$ discrepancy.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1074","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We study the $L_p$ discrepancy of two-dimensional digital nets for finite $p$. In the year 2001 Larcher and Pillichshammer identified a class of digital nets for which the symmetrized version in the sense of Davenport has $L_2$ discrepancy of the order $\sqrt{\log N}/N$, which is best possible due to the celebrated result of Roth. However, it remained open whether this discrepancy bound also holds for the original digital nets without any modification. In the present paper we identify nets from the above mentioned class for which the symmetrization is not necessary in order to achieve the optimal order of $L_p$ discrepancy for all $p \in [1,\infty)$. Our findings are in the spirit of a paper by Bilyk from 2013, who considered the $L_2$ discrepancy of lattices consisting of the elements $(k/N,\{k \alpha\})$ for $k=0,1,\ldots,N-1$, and who gave Diophantine properties of $\alpha$ which guarantee the optimal order of $L_2$ discrepancy.
具有L_p差异最优阶的二维数字网络
我们研究了有限$p$下二维数字网的$L_p$差异。2001年,Larcher和Pillichhammer确定了一类数字网络,Davenport意义上的对称化版本具有$L_2$的顺序$\sqrt{\log N}/N$的差异,这是由于Roth的著名结果而可能的。然而,在没有任何修改的情况下,这种差异界限是否也适用于原始数字网络,仍然悬而未决。在本文中,我们从上述类中识别出对于所有$p\In[1,\infty)$,为了实现$L_p$差异的最优阶,不需要对称化的网。我们的发现符合Bilyk 2013年的一篇论文的精神,他考虑了由元素$(k/N,\{k\alpha\})组成的格的$L_2$差异$k=0,1,\ldots,N-1$,以及谁给出了$\alpha$的丢番图性质,这保证了$L_2$差异的最优阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信