{"title":"Existence results for fractional Brezis-Nirenberg type problems in unbounded domains","authors":"Yansheng Shen, Xumin Wang","doi":"10.12775/tmna.2022.009","DOIUrl":null,"url":null,"abstract":"In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains\n\\begin{align*}\n\\begin{cases}\n(-\\Delta)^{s}u-\\mu\\dfrac{u}{|x|^{2s}}=\\lambda u+|u|^{2^{\\ast}_{s}-2}u\n & \\text{in } \\Omega,\\\\\n u=0 & \\text{in } \\mathbb{R}^{N}\\setminus \\Omega,\n\\end{cases}\n\\end{align*}\nwhere $(-\\Delta)^{s}$ is the fractional Laplace operator with $s\\in(0,1)$,\n$\\mu\\in[0,\\Lambda_{N,s})$ with $\\Lambda_{N,s}$ the best fractional Hardy constant, $\\lambda> 0$, $N> 2s$ and $2^{\\ast}_{s}={2N}/({N-2s})$\ndenotes the fractional critical Sobolev exponent. By applying the fractional\nPoincaré inequality together with the concentration-compactness principle\nfor fractional Sobolev spaces in unbounded domains, we prove an existence\nresult to the equation.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains
\begin{align*}
\begin{cases}
(-\Delta)^{s}u-\mu\dfrac{u}{|x|^{2s}}=\lambda u+|u|^{2^{\ast}_{s}-2}u
& \text{in } \Omega,\\
u=0 & \text{in } \mathbb{R}^{N}\setminus \Omega,
\end{cases}
\end{align*}
where $(-\Delta)^{s}$ is the fractional Laplace operator with $s\in(0,1)$,
$\mu\in[0,\Lambda_{N,s})$ with $\Lambda_{N,s}$ the best fractional Hardy constant, $\lambda> 0$, $N> 2s$ and $2^{\ast}_{s}={2N}/({N-2s})$
denotes the fractional critical Sobolev exponent. By applying the fractional
Poincaré inequality together with the concentration-compactness principle
for fractional Sobolev spaces in unbounded domains, we prove an existence
result to the equation.
本文研究了无界圆柱型域中的分数阶Brezis-Nirenberg型问题^{s}u-\mu\dfrac{u}{|x|^{2s}}=λu+| u | ^{2^{\ast}_{s}-2}u&&\text{in}\Omega,\\u=0&&\text{in}\mathbb{R}^{N}\setminus\Omega、\end{cases}\end{align*},其中$(-\Delta)^{s}$是具有$s\in(0,1)$的分数拉普拉斯算子,$\mu\in[0],\Lambda_{N,s})$,其中$\Lambda_{N,s}$是最佳分式Hardy常数,$\Lambda>0$,$N>2s$和$2^{\sast}_{s}={2N}/({N-2s})$$表示分数临界Sobolev指数。
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.