Existence results for fractional Brezis-Nirenberg type problems in unbounded domains

IF 0.7 4区 数学 Q2 MATHEMATICS
Yansheng Shen, Xumin Wang
{"title":"Existence results for fractional Brezis-Nirenberg type problems in unbounded domains","authors":"Yansheng Shen, Xumin Wang","doi":"10.12775/tmna.2022.009","DOIUrl":null,"url":null,"abstract":"In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains\n\\begin{align*}\n\\begin{cases}\n(-\\Delta)^{s}u-\\mu\\dfrac{u}{|x|^{2s}}=\\lambda u+|u|^{2^{\\ast}_{s}-2}u\n & \\text{in } \\Omega,\\\\\n u=0 & \\text{in } \\mathbb{R}^{N}\\setminus \\Omega,\n\\end{cases}\n\\end{align*}\nwhere $(-\\Delta)^{s}$ is the fractional Laplace operator with $s\\in(0,1)$,\n$\\mu\\in[0,\\Lambda_{N,s})$ with $\\Lambda_{N,s}$ the best fractional Hardy constant, $\\lambda> 0$, $N> 2s$ and $2^{\\ast}_{s}={2N}/({N-2s})$\ndenotes the fractional critical Sobolev exponent. By applying the fractional\nPoincaré inequality together with the concentration-compactness principle\nfor fractional Sobolev spaces in unbounded domains, we prove an existence\nresult to the equation.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the fractional Brezis-Nirenberg type problems in unbounded cylinder-type domains \begin{align*} \begin{cases} (-\Delta)^{s}u-\mu\dfrac{u}{|x|^{2s}}=\lambda u+|u|^{2^{\ast}_{s}-2}u & \text{in } \Omega,\\ u=0 & \text{in } \mathbb{R}^{N}\setminus \Omega, \end{cases} \end{align*} where $(-\Delta)^{s}$ is the fractional Laplace operator with $s\in(0,1)$, $\mu\in[0,\Lambda_{N,s})$ with $\Lambda_{N,s}$ the best fractional Hardy constant, $\lambda> 0$, $N> 2s$ and $2^{\ast}_{s}={2N}/({N-2s})$ denotes the fractional critical Sobolev exponent. By applying the fractional Poincaré inequality together with the concentration-compactness principle for fractional Sobolev spaces in unbounded domains, we prove an existence result to the equation.
无界区域上分数阶Brezis-Nirenberg型问题的存在性结果
本文研究了无界圆柱型域中的分数阶Brezis-Nirenberg型问题^{s}u-\mu\dfrac{u}{|x|^{2s}}=λu+| u | ^{2^{\ast}_{s}-2}u&&\text{in}\Omega,\\u=0&&\text{in}\mathbb{R}^{N}\setminus\Omega、\end{cases}\end{align*},其中$(-\Delta)^{s}$是具有$s\in(0,1)$的分数拉普拉斯算子,$\mu\in[0],\Lambda_{N,s})$,其中$\Lambda_{N,s}$是最佳分式Hardy常数,$\Lambda>0$,$N>2s$和$2^{\sast}_{s}={2N}/({N-2s})$$表示分数临界Sobolev指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信