Seepage and Stability Analysis of the Eyvashan Earth Dam under Drawdown Conditions

IF 1 Q4 ENGINEERING, CIVIL
M. Komasi, B. Beiranvand
{"title":"Seepage and Stability Analysis of the Eyvashan Earth Dam under Drawdown Conditions","authors":"M. Komasi, B. Beiranvand","doi":"10.22059/CEIJ.2020.293429.1634","DOIUrl":null,"url":null,"abstract":"The rapid drawdown condition to control floods and irrigation is one of the things that may occur over the lifetime of the dam. Also, the stability of the dam at the rapid drawdown will be more important due to the faster reduction of the water level of the dam reservoir than the pore water pressure. In this study, the finite element method and software GeoStudio used to study the seepage from the body earth dam. Also, the complete elastic-plastic model of Mohr-Coulomb is considered in the analysis. In this study, the stability analysis of the Eyvshvan earth dam after rapid drawdown due water to release of the dam reservoir to downstream agricultural lands during drought crisis is investigated. For the validation, first, the results of the pore water pressure instrument were compared with the results of numerical analysis. The results of multivariate regression analysis (coefficient of determination) show very good agreement of about R2=0.98. The results show that the phreatic line remains after 29 days from the start of the rapid drawdown of the reservoir, while half of the volume of the drained reservoir remains at 1842 (1/3 of the crest). The analysis of dam stability during rapid drawdown using both Morgenstern-Price and Bishop Methods showed that the most critical situation would occur after 42 days of discharge with a factor of safety (FoS) of 1.71, with no stability hazard and the upstream slope would be safe.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2020.293429.1634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

The rapid drawdown condition to control floods and irrigation is one of the things that may occur over the lifetime of the dam. Also, the stability of the dam at the rapid drawdown will be more important due to the faster reduction of the water level of the dam reservoir than the pore water pressure. In this study, the finite element method and software GeoStudio used to study the seepage from the body earth dam. Also, the complete elastic-plastic model of Mohr-Coulomb is considered in the analysis. In this study, the stability analysis of the Eyvshvan earth dam after rapid drawdown due water to release of the dam reservoir to downstream agricultural lands during drought crisis is investigated. For the validation, first, the results of the pore water pressure instrument were compared with the results of numerical analysis. The results of multivariate regression analysis (coefficient of determination) show very good agreement of about R2=0.98. The results show that the phreatic line remains after 29 days from the start of the rapid drawdown of the reservoir, while half of the volume of the drained reservoir remains at 1842 (1/3 of the crest). The analysis of dam stability during rapid drawdown using both Morgenstern-Price and Bishop Methods showed that the most critical situation would occur after 42 days of discharge with a factor of safety (FoS) of 1.71, with no stability hazard and the upstream slope would be safe.
下压条件下额瓦山土坝渗流与稳定性分析
控制洪水和灌溉的快速水位下降条件是大坝使用寿命内可能发生的事情之一。此外,由于大坝水库水位比孔隙水压力下降得更快,因此大坝在快速水位下降时的稳定性将更加重要。本研究采用有限元方法和GeoStudio软件对坝体坝体渗流进行了研究。分析中还考虑了完整的莫尔-库仑弹塑性模型。在这项研究中,对Eyvshvan土坝在干旱危机期间因大坝水库向下游农业用地放水而迅速下降后的稳定性分析进行了调查。为了验证,首先将孔隙水压力仪的结果与数值分析的结果进行了比较。多元回归分析的结果(决定系数)显示出非常好的一致性,约R2=0.98。结果表明,从水库快速水位下降开始29天后,浸润线仍保持不变,而排水水库的一半体积仍保持在1842(坝顶的1/3)。使用Morgenstern-Price和Bishop方法对快速水位下降期间的大坝稳定性进行的分析表明,最关键的情况将发生在流量42天后,安全系数(FoS)为1.71,没有稳定危险,上游边坡将是安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信