{"title":"A Common-Gate, gm-boosting LNA Using Active Inductor-Based Input Matching for 3.1–10.6 GHz UWB Applications","authors":"Humirah Majeed, Vikram Singh","doi":"10.54614/electrica.2022.21136","DOIUrl":null,"url":null,"abstract":"This paper presents the circuit of a low-noise amplifier (LNA) using active inductor (AI) input matching with common gate (CG) current-reused technique. This configuration is implemented in 90 nm CMOS and enables to achieve high power-gain (S 21 ) with ultra-wideband (UWB) input matching at low power levels. Utilization of modified high-Q AI at the input side of the proposed LNA reduces the number of inductors and achieves UWB from only two inductors. Proposed LNA dissipates 10.4 mW from 1.0 V supply and exhibits an S 21 response of 18.0 ± 0.8 dB for 3.1–10.6 GHz with a maximum and average S 21 of 18.8 dB and 18.22 dB, respectively. The proposed LNA has noise-figure (NF) equal to 3.36–4.68 dB, with input (S 11 ) and output (S 22 ) reflection coefficients of less than − 9.3 dB and − 11.35 dB, respectively across the entire UWB range.","PeriodicalId":36781,"journal":{"name":"Electrica","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54614/electrica.2022.21136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the circuit of a low-noise amplifier (LNA) using active inductor (AI) input matching with common gate (CG) current-reused technique. This configuration is implemented in 90 nm CMOS and enables to achieve high power-gain (S 21 ) with ultra-wideband (UWB) input matching at low power levels. Utilization of modified high-Q AI at the input side of the proposed LNA reduces the number of inductors and achieves UWB from only two inductors. Proposed LNA dissipates 10.4 mW from 1.0 V supply and exhibits an S 21 response of 18.0 ± 0.8 dB for 3.1–10.6 GHz with a maximum and average S 21 of 18.8 dB and 18.22 dB, respectively. The proposed LNA has noise-figure (NF) equal to 3.36–4.68 dB, with input (S 11 ) and output (S 22 ) reflection coefficients of less than − 9.3 dB and − 11.35 dB, respectively across the entire UWB range.